




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆北京師范大學(xué)附中高三壓軸卷數(shù)學(xué)試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè),,則的值為()A. B.C. D.2.已知為虛數(shù)單位,復(fù)數(shù),則其共軛復(fù)數(shù)()A. B. C. D.3.設(shè),分別為雙曲線(a>0,b>0)的左、右焦點,過點作圓的切線與雙曲線的左支交于點P,若,則雙曲線的離心率為()A. B. C. D.4.已知定義在上的奇函數(shù)和偶函數(shù)滿足(且),若,則函數(shù)的單調(diào)遞增區(qū)間為()A. B. C. D.5.已知i是虛數(shù)單位,則1+iiA.-12+32i6.音樂,是用聲音來展現(xiàn)美,給人以聽覺上的享受,熔鑄人們的美學(xué)趣味.著名數(shù)學(xué)家傅立葉研究了樂聲的本質(zhì),他證明了所有的樂聲都能用數(shù)學(xué)表達(dá)式來描述,它們是一些形如的簡單正弦函數(shù)的和,其中頻率最低的一項是基本音,其余的為泛音.由樂聲的數(shù)學(xué)表達(dá)式可知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波.下列函數(shù)中不能與函數(shù)構(gòu)成樂音的是()A. B. C. D.7.定義在R上的函數(shù)y=fx滿足fx≤2x-1A. B. C. D.8.函數(shù)的一個零點在區(qū)間內(nèi),則實數(shù)a的取值范圍是()A. B. C. D.9.()A. B. C. D.10.已知展開式中第三項的二項式系數(shù)與第四項的二項式系數(shù)相等,,若,則的值為()A.1 B.-1 C.8l D.-8111.設(shè)等比數(shù)列的前項和為,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件12.定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),當(dāng)x∈[﹣3,﹣2]時,f(x)=﹣x﹣2,則()A. B.f(sin3)<f(cos3)C. D.f(2020)>f(2019)二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點(1,1)處的切線與軸及直線=所圍成的三角形面積為,則實數(shù)=____。14.在二項式的展開式中,的系數(shù)為________.15.已知數(shù)列遞增的等比數(shù)列,若,,則______.16.設(shè)雙曲線的左焦點為,過點且傾斜角為45°的直線與雙曲線的兩條漸近線順次交于,兩點若,則的離心率為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)為拋物線的焦點,,為拋物線上的兩個動點,為坐標(biāo)原點.(Ⅰ)若點在線段上,求的最小值;(Ⅱ)當(dāng)時,求點縱坐標(biāo)的取值范圍.18.(12分)如圖,在四棱錐中,平面平面,.(Ⅰ)求證:平面;(Ⅱ)若銳二面角的余弦值為,求直線與平面所成的角.19.(12分)已知函數(shù).(1)設(shè),若存在兩個極值點,,且,求證:;(2)設(shè),在不單調(diào),且恒成立,求的取值范圍.(為自然對數(shù)的底數(shù)).20.(12分)選修4-2:矩陣與變換(本小題滿分10分)已知矩陣A=(k≠0)的一個特征向量為α=,A的逆矩陣A-1對應(yīng)的變換將點(3,1)變?yōu)辄c(1,1).求實數(shù)a,k的值.21.(12分)已知是等腰直角三角形,.分別為的中點,沿將折起,得到如圖所示的四棱錐.(Ⅰ)求證:平面平面.(Ⅱ)當(dāng)三棱錐的體積取最大值時,求平面與平面所成角的正弦值.22.(10分)已知函數(shù).(1)解不等式;(2)若函數(shù)存在零點,求的求值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
利用倍角公式求得的值,利用誘導(dǎo)公式求得的值,利用同角三角函數(shù)關(guān)系式求得的值,進(jìn)而求得的值,最后利用正切差角公式求得結(jié)果.【詳解】,,,,,,,,故選:D.【點睛】該題考查的是有關(guān)三角函數(shù)求值問題,涉及到的知識點有誘導(dǎo)公式,正切倍角公式,同角三角函數(shù)關(guān)系式,正切差角公式,屬于基礎(chǔ)題目.2、B【解析】
先根據(jù)復(fù)數(shù)的乘法計算出,然后再根據(jù)共軛復(fù)數(shù)的概念直接寫出即可.【詳解】由,所以其共軛復(fù)數(shù).故選:B.【點睛】本題考查復(fù)數(shù)的乘法運算以及共軛復(fù)數(shù)的概念,難度較易.3、C【解析】
設(shè)過點作圓的切線的切點為,根據(jù)切線的性質(zhì)可得,且,再由和雙曲線的定義可得,得出為中點,則有,得到,即可求解.【詳解】設(shè)過點作圓的切線的切點為,,所以是中點,,,.故選:C.【點睛】本題考查雙曲線的性質(zhì)、雙曲線定義、圓的切線性質(zhì),意在考查直觀想象、邏輯推理和數(shù)學(xué)計算能力,屬于中檔題.4、D【解析】
根據(jù)函數(shù)的奇偶性用方程法求出的解析式,進(jìn)而求出,再根據(jù)復(fù)合函數(shù)的單調(diào)性,即可求出結(jié)論.【詳解】依題意有,①,②①②得,又因為,所以,在上單調(diào)遞增,所以函數(shù)的單調(diào)遞增區(qū)間為.故選:D.【點睛】本題考查求函數(shù)的解析式、函數(shù)的性質(zhì),要熟記復(fù)合函數(shù)單調(diào)性判斷方法,屬于中檔題.5、D【解析】
利用復(fù)數(shù)的運算法則即可化簡得出結(jié)果【詳解】1+i故選D【點睛】本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,屬于基礎(chǔ)題。6、C【解析】
由基本音的諧波的定義可得,利用可得,即可判斷選項.【詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C【點睛】本題考查三角函數(shù)的周期與頻率,考查理解分析能力.7、D【解析】
根據(jù)y=fx+1為奇函數(shù),得到函數(shù)關(guān)于1,0中心對稱,排除AB,計算f1.5≤【詳解】y=fx+1為奇函數(shù),即fx+1=-f-x+1,函數(shù)關(guān)于f1.5≤2故選:D.【點睛】本題考查了函數(shù)圖像的識別,確定函數(shù)關(guān)于1,0中心對稱是解題的關(guān)鍵.8、C【解析】
顯然函數(shù)在區(qū)間內(nèi)連續(xù),由的一個零點在區(qū)間內(nèi),則,即可求解.【詳解】由題,顯然函數(shù)在區(qū)間內(nèi)連續(xù),因為的一個零點在區(qū)間內(nèi),所以,即,解得,故選:C【點睛】本題考查零點存在性定理的應(yīng)用,屬于基礎(chǔ)題.9、B【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】.故選B.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.10、B【解析】
根據(jù)二項式系數(shù)的性質(zhì),可求得,再通過賦值求得以及結(jié)果即可.【詳解】因為展開式中第三項的二項式系數(shù)與第四項的二項式系數(shù)相等,故可得,令,故可得,又因為,令,則,解得令,則.故選:B.【點睛】本題考查二項式系數(shù)的性質(zhì),以及通過賦值法求系數(shù)之和,屬綜合基礎(chǔ)題.11、C【解析】
根據(jù)等比數(shù)列的前項和公式,判斷出正確選項.【詳解】由于數(shù)列是等比數(shù)列,所以,由于,所以,故“”是“”的充分必要條件.故選:C【點睛】本小題主要考查充分、必要條件的判斷,考查等比數(shù)列前項和公式,屬于基礎(chǔ)題.12、B【解析】
根據(jù)函數(shù)的周期性以及x∈[﹣3,﹣2]的解析式,可作出函數(shù)f(x)在定義域上的圖象,由此結(jié)合選項判斷即可.【詳解】由f(x+2)=f(x),得f(x)是周期函數(shù)且周期為2,先作出f(x)在x∈[﹣3,﹣2]時的圖象,然后根據(jù)周期為2依次平移,并結(jié)合f(x)是偶函數(shù)作出f(x)在R上的圖象如下,選項A,,所以,選項A錯誤;選項B,因為,所以,所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),選項B正確;選項C,,所以,即,選項C錯誤;選項D,,選項D錯誤.故選:B.【點睛】本題考查函數(shù)性質(zhì)的綜合運用,考查函數(shù)值的大小比較,考查數(shù)形結(jié)合思想,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、或1【解析】
利用導(dǎo)數(shù)的幾何意義,可得切線的斜率,以及切線方程,求得切線與軸和的交點,由三角形的面積公式可得所求值.【詳解】的導(dǎo)數(shù)為,可得切線的斜率為3,切線方程為,可得,可得切線與軸的交點為,,切線與的交點為,可得,解得或?!军c睛】本題主要考查利用導(dǎo)數(shù)求切線方程,以及直線方程的運用,三角形的面積求法。14、60【解析】
直接利用二項式定理計算得到答案.【詳解】二項式的展開式通項為:,取,則的系數(shù)為.故答案為:.【點睛】本題考查了二項式定理,意在考查學(xué)生的計算能力和應(yīng)用能力.15、【解析】
,建立方程組,且,求出,進(jìn)而求出的公比,即可求出結(jié)論.【詳解】數(shù)列遞增的等比數(shù)列,,,解得,所以的公比為,.
故答案為:.【點睛】本題考查等比數(shù)列的性質(zhì)、通項公式,屬于基礎(chǔ)題.16、【解析】
設(shè)直線的方程為,與聯(lián)立得到A點坐標(biāo),由得,,代入可得,即得解.【詳解】由題意,直線的方程為,與聯(lián)立得,,由得,,從而,即,從而離心率.故答案為:【點睛】本題考查了雙曲線的離心率,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】
(1)由拋物線的性質(zhì),當(dāng)軸時,最小;(2)設(shè)點,,分別代入拋物線方程和得到三個方程,消去,得到關(guān)于的一元二次方程,利用判別式即可求出的范圍.【詳解】解:(1)由拋物線的標(biāo)準(zhǔn)方程,,根據(jù)拋物線的性質(zhì),當(dāng)軸時,最小,最小值為,即為4.(2)由題意,設(shè)點,,其中,.則,①,②因為,,,所以.③由①②③,得,由,且,得,解不等式,得點縱坐標(biāo)的范圍為.【點睛】本題主要考查拋物線的方程和性質(zhì)和二次方程的解的問題,考查運算能力,此類問題能較好的考查考生的邏輯思維能力、運算求解能力、分析問題解決問題的能力等,易錯點是復(fù)雜式子的變形能力不足,導(dǎo)致錯解.18、(Ⅰ)詳見解析;(Ⅱ).【解析】
(Ⅰ)由余弦定理解得,即可得到,由面面垂直的性質(zhì)可得平面,即可得到,從而得證;(Ⅱ)在平面中,過點作于點,則平面,如圖所示建立空間直角坐標(biāo)系,設(shè),其中,利用空間向量法得到二面角的余弦,即可得到的關(guān)系,從而得解;【詳解】解:(Ⅰ)證明:在中,,解得,則,從而因為平面平面,平面平面所以平面,又因為平面,所以,因為,,平面,平面,所以平面;(Ⅱ)解:在平面中,過點作于點,則平面,如圖所示建立空間直角坐標(biāo)系,設(shè),其中,則設(shè)平面的法向量為,則,即,令,則又平面的一個法向量,則從而,故則直線與平面所成的角為,大小為.【點睛】本題考查線面垂直的判定,面面垂直的性質(zhì)定理的應(yīng)用,利用空間向量法解決立體幾何問題,屬于中檔題.19、(1)證明見解析;(2).【解析】
(1)先求出,又由可判斷出在上單調(diào)遞減,故,令,記,利用導(dǎo)數(shù)求出的最小值即可;(2)由在上不單調(diào)轉(zhuǎn)化為在上有解,可得,令,分類討論求的最大值,再求解即可.【詳解】(1)已知,,由可得,又由,知在上單調(diào)遞減,令,記,則在上單調(diào)遞增;,在上單調(diào)遞增;,(2),,在上不單調(diào),在上有正有負(fù),在上有解,,,恒成立,記,則,記,,在上單調(diào)增,在上單調(diào)減.于是知(i)當(dāng)即時,恒成立,在上單調(diào)增,,,.(ii)當(dāng)時,,故不滿足題意.綜上所述,【點睛】本題主要考查了導(dǎo)數(shù)的綜合應(yīng)用,考查了分類討論,轉(zhuǎn)化與化歸的思想,考查了學(xué)生的運算求解能力.20、解:設(shè)特征向量為α=對應(yīng)的特征值為λ,則=λ,即因為k≠0,所以a=2.5分因為,所以A=,即=,所以2+k=3,解得k=2.綜上,a=2,k=2.20分【解析】試題分析:由特征向量求矩陣A,由逆矩陣求k考點:特征向量,逆矩陣點評:本題主要考查了二階矩陣,以及特征值與特征向量的計算,考查逆矩陣.21、(Ⅰ)見解析.(Ⅱ).【解析】
(I)證明平面得出平面,根據(jù)面面垂直的判定定理得到結(jié)論;(II)當(dāng)平面時,棱錐體積最大,建立空間坐標(biāo)系,計算兩平面的法向量,計算法向量的夾角得出答案.【詳解】(I)證明:分別為的中點,,又平面平面,又平面平面平面(II),為定值當(dāng)平面時,三棱錐的體積取最大值以為原點,以為坐標(biāo)軸建立空間直角坐標(biāo)系則,設(shè)平面的法向量為,則即,令可得平面是平面的一個法向量平面與平面所成角的正弦值為【點睛】本題考查了面面垂直的判定,二面角的計算,關(guān)鍵是能夠根據(jù)體積的最值確定垂直關(guān)系,從而可以建立起空間直角坐標(biāo)系,利用空間向量法求得二面角,屬于中檔題.22、(1)或;(2).【解析】
(1)通過討論的范圍,將絕對值符號去掉,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 勞動合同范本題目
- 農(nóng)村水田租賃承包合同范本
- 企業(yè)汽車銷售合同范本
- 代理買賣二手車合同范本
- 代領(lǐng)購房合同范本
- 一般經(jīng)銷合同范例
- 個人購貨采購合同范本
- 關(guān)于裝修貸款合同范本
- 升旗臺合同范本
- 前臺勞務(wù)派遣合同范本
- 《保健按摩師》(五級)理論知識鑒定要素細(xì)目表
- 陳日新腧穴熱敏化艾灸新療法上篇
- 剪紙藝術(shù)-認(rèn)識剪紙
- 駕駛員違規(guī)違章學(xué)習(xí)記錄表
- PID烙鐵恒溫控制器設(shè)計與制作_圖文
- wincc全套腳本總結(jié)
- 簡易瞬態(tài)工況法1
- 中國鐵路總公司環(huán)境保護(hù)管理辦法(鐵總計統(tǒng)〔2015〕260號)
- 醫(yī)療器械全生命周期風(fēng)險管理
- 技術(shù)分析介紹教程課件
- 環(huán)境與健康第六講居室環(huán)境與健康
評論
0/150
提交評論