




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年吉林省農安縣普通高中高考考前提分數(shù)學仿真卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,矩形ABCD中,,,E是AD的中點,將沿BE折起至,記二面角的平面角為,直線與平面BCDE所成的角為,與BC所成的角為,有如下兩個命題:①對滿足題意的任意的的位置,;②對滿足題意的任意的的位置,,則()A.命題①和命題②都成立 B.命題①和命題②都不成立C.命題①成立,命題②不成立 D.命題①不成立,命題②成立2.公元前世紀,古希臘哲學家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)谋?當比賽開始后,若阿基里斯跑了米,此時烏龜便領先他米,當阿基里斯跑完下一個米時,烏龜先他米,當阿基里斯跑完下-個米時,烏龜先他米....所以,阿基里斯永遠追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時,烏龜爬行的總距離為()A.米 B.米C.米 D.米3.已知函數(shù),則()A.1 B.2 C.3 D.44.已知拋物線,F(xiàn)為拋物線的焦點且MN為過焦點的弦,若,,則的面積為()A. B. C. D.5.設為坐標原點,是以為焦點的拋物線上任意一點,是線段上的點,且,則直線的斜率的最大值為()A. B. C. D.16.函數(shù)fxA. B.C. D.7.已知,,為圓上的動點,,過點作與垂直的直線交直線于點,若點的橫坐標為,則的取值范圍是()A. B. C. D.8.金庸先生的武俠小說《射雕英雄傳》第12回中有這樣一段情節(jié),“……洪七公道:肉只五種,但豬羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有幾般變化,我可算不出了”.現(xiàn)有五種不同的肉,任何兩種(含兩種)以上的肉混合后的滋味都不一樣,則混合后可以組成的所有不同的滋味種數(shù)為()A.20 B.24 C.25 D.269.設i為數(shù)單位,為z的共軛復數(shù),若,則()A. B. C. D.10.已知,是橢圓的左、右焦點,過的直線交橢圓于兩點.若依次構成等差數(shù)列,且,則橢圓的離心率為A. B. C. D.11.已知非零向量、,若且,則向量在向量方向上的投影為()A. B. C. D.12.若復數(shù)(為虛數(shù)單位)的實部與虛部相等,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知曲線,點,在曲線上,且以為直徑的圓的方程是.則_______.14.已知向量,滿足,,且已知向量,的夾角為,,則的最小值是__.15.曲線在點處的切線方程是__________.16.為激發(fā)學生團結協(xié)作,敢于拼搏,不言放棄的精神,某校高三5個班進行班級間的拔河比賽.每兩班之間只比賽1場,目前(—)班已賽了4場,(二)班已賽了3場,(三)班已賽了2場,(四)班已賽了1場.則目前(五)班已經參加比賽的場次為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求不等式的解集;(2)若不等式在上恒成立,求實數(shù)的取值范圍.18.(12分)在直角坐標系中,點的坐標為,直線的參數(shù)方程為(為參數(shù),為常數(shù),且).以直角坐標系的原點為極點,軸的正半軸為極軸,且兩個坐標系取相等的長度單位,建立極坐標系,圓的極坐標方程為.設點在圓外.(1)求的取值范圍.(2)設直線與圓相交于兩點,若,求的值.19.(12分)心形線是由一個圓上的一個定點,當該圓在繞著與其相切且半徑相同的另外一個圓周上滾動時,這個定點的軌跡,因其形狀像心形而得名,在極坐標系中,方程()表示的曲線就是一條心形線,如圖,以極軸所在的直線為軸,極點為坐標原點的直角坐標系中.已知曲線的參數(shù)方程為(為參數(shù)).(1)求曲線的極坐標方程;(2)若曲線與相交于、、三點,求線段的長.20.(12分)已知橢圓:()的左、右頂點分別為、,焦距為2,點為橢圓上異于、的點,且直線和的斜率之積為.(1)求的方程;(2)設直線與軸的交點為,過坐標原點作交橢圓于點,試探究是否為定值,若是,求出該定值;若不是,請說明理由.21.(12分)已知橢圓,點,點滿足(其中為坐標原點),點在橢圓上.(1)求橢圓的標準方程;(2)設橢圓的右焦點為,若不經過點的直線與橢圓交于兩點.且與圓相切.的周長是否為定值?若是,求出定值;若不是,請說明理由.22.(10分)設函數(shù),其中.(Ⅰ)當為偶函數(shù)時,求函數(shù)的極值;(Ⅱ)若函數(shù)在區(qū)間上有兩個零點,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
作出二面角的補角、線面角、線線角的補角,由此判斷出兩個命題的正確性.【詳解】①如圖所示,過作平面,垂足為,連接,作,連接.由圖可知,,所以,所以①正確.②由于,所以與所成角,所以,所以②正確.綜上所述,①②都正確.故選:A【點睛】本題考查了折疊問題、空間角、數(shù)形結合方法,考查了推理能力與計算能力,屬于中檔題.2、D【解析】
根據(jù)題意,是一個等比數(shù)列模型,設,由,解得,再求和.【詳解】根據(jù)題意,這是一個等比數(shù)列模型,設,所以,解得,所以.故選:D【點睛】本題主要考查等比數(shù)列的實際應用,還考查了建模解模的能力,屬于中檔題.3、C【解析】
結合分段函數(shù)的解析式,先求出,進而可求出.【詳解】由題意可得,則.故選:C.【點睛】本題考查了求函數(shù)的值,考查了分段函數(shù)的性質,考查運算求解能力,屬于基礎題.4、A【解析】
根據(jù)可知,再利用拋物線的焦半徑公式以及三角形面積公式求解即可.【詳解】由題意可知拋物線方程為,設點點,則由拋物線定義知,,則.由得,則.又MN為過焦點的弦,所以,則,所以.故選:A【點睛】本題考查拋物線的方程應用,同時也考查了焦半徑公式等.屬于中檔題.5、C【解析】試題分析:設,由題意,顯然時不符合題意,故,則,可得:,當且僅當時取等號,故選C.考點:1.拋物線的簡單幾何性質;2.均值不等式.【方法點晴】本題主要考查的是向量在解析幾何中的應用及拋物線標準方程方程,均值不等式的靈活運用,屬于中檔題.解題時一定要注意分析條件,根據(jù)條件,利用向量的運算可知,寫出直線的斜率,注意均值不等式的使用,特別是要分析等號是否成立,否則易出問題.6、A【解析】
由f12=e-14>0排除選項D;【詳解】由f12=e-14>0,可排除選項D,f-1=-e【點睛】本題通過對多個圖象的選擇考查函數(shù)的圖象與性質,屬于中檔題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調性、奇偶性、特殊點以及x→07、A【解析】
由題意得,即可得點M的軌跡為以A,B為左、右焦點,的雙曲線,根據(jù)雙曲線的性質即可得解.【詳解】如圖,連接OP,AM,由題意得,點M的軌跡為以A,B為左、右焦點,的雙曲線,.故選:A.【點睛】本題考查了雙曲線定義的應用,考查了轉化化歸思想,屬于中檔題.8、D【解析】
利用組合的意義可得混合后所有不同的滋味種數(shù)為,再利用組合數(shù)的計算公式可得所求的種數(shù).【詳解】混合后可以組成的所有不同的滋味種數(shù)為(種),故選:D.【點睛】本題考查組合的應用,此類問題注意實際問題的合理轉化,本題屬于容易題.9、A【解析】
由復數(shù)的除法求出,然后計算.【詳解】,∴.故選:A.【點睛】本題考查復數(shù)的乘除法運算,考查共軛復數(shù)的概念,掌握復數(shù)的運算法則是解題關鍵.10、D【解析】
如圖所示,設依次構成等差數(shù)列,其公差為.根據(jù)橢圓定義得,又,則,解得,.所以,,,.在和中,由余弦定理得,整理解得.故選D.11、D【解析】
設非零向量與的夾角為,在等式兩邊平方,求出的值,進而可求得向量在向量方向上的投影為,即可得解.【詳解】,由得,整理得,,解得,因此,向量在向量方向上的投影為.故選:D.【點睛】本題考查向量投影的計算,同時也考查利用向量的模計算向量的夾角,考查計算能力,屬于基礎題.12、C【解析】
利用復數(shù)的除法,以及復數(shù)的基本概念求解即可.【詳解】,又的實部與虛部相等,,解得.故選:C【點睛】本題主要考查復數(shù)的除法運算,復數(shù)的概念運用.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設所在直線方程為設?點坐標分別為,,都在上,代入曲線方程,兩式作差可得,從而可得直線的斜率,聯(lián)立直線與的方程,由,利用弦長公式即可求解.【詳解】因為是圓的直徑,必過圓心點,設所在直線方程為設?點坐標分別為,,都在上,故兩式相減,可得(因為是的中點),即聯(lián)立直線與的方程:又,即,即又因為,則有即∴.故答案為:【點睛】本題考查了直線與圓錐曲線的位置關系、弦長公式,考查了學生的計算能力,綜合性比較強,屬于中檔題.14、【解析】
求的最小值可以轉化為求以AB為直徑的圓到點O的最小距離,由此即可得到本題答案.【詳解】如圖所示,設,由題,得,又,所以,則點C在以AB為直徑的圓上,取AB的中點為M,則,設以AB為直徑的圓與線段OM的交點為E,則的最小值是,因為,又,所以的最小值是.故答案為:【點睛】本題主要考查向量的綜合應用問題,涉及到圓的相關知識與余弦定理,考查學生的分析問題和解決問題的能力,體現(xiàn)了數(shù)形結合的數(shù)學思想.15、【解析】
利用導數(shù)的幾何意義計算即可.【詳解】由已知,,所以,又,所以切線方程為,即.故答案為:【點睛】本題考查導數(shù)的幾何意義,考查學生的基本計算能力,要注意在某點處的切線與過某點的切線的區(qū)別,是一道容易題.16、2【解析】
根據(jù)比賽場次,分析,畫出圖象,計算結果.【詳解】畫圖所示,可知目前(五)班已經賽了2場.故答案為:2【點睛】本題考查推理,計數(shù)原理的圖形表示,意在考查數(shù)形結合分析問題的能力,屬于基礎題型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)分類討論去絕對值號,即可求解;(2)原不等式可轉化為在R上恒成立,分別求函數(shù)與的最小值,根據(jù)能同時成立,可得的最小值,即可求解.【詳解】(1)①當時,不等式可化為,得,無解;②當-2≤x≤1時,不等式可化為得x>0,故0<x≤1;③當x>1時,不等式可化為,得x<2,故1<x<2.綜上,不等式的解集為(2)由題意知在R上恒成立,所以令,則當時,又當時,取得最小值,且又所以當時,與同時取得最小值.所以所以,即實數(shù)的取值范圍為【點睛】本題主要考查了含絕對值不等式的解法,分類討論,函數(shù)的最值,屬于中檔題.18、(1)(2)【解析】
(1)首先將曲線化為直角坐標方程,由點在圓外,則解得即可;(2)將直線的參數(shù)方程代入圓的普通方程,設、對應的參數(shù)分別為,列出韋達定理,由及在圓的上方,得,即即可解得;【詳解】解:(1)曲線的直角坐標方程為.由點在圓外,得點的坐標為,結合,解得.故的取值范圍是.(2)由直線的參數(shù)方程,得直線過點,傾斜角為,將直線的參數(shù)方程代入,并整理得,其中.設、對應的參數(shù)分別為,則,.由及在圓的上方,得,即,代入①,得,,消去,得,結合,解得.故的值是.【點睛】本題考查極坐標方程化為直角坐標方程,直線的參數(shù)方程的幾何意義的應用,屬于中檔題.19、(1)();(2).【解析】
(1)化簡得到直線方程為,再利用極坐標公式計算得到答案.(2)聯(lián)立方程計算得到,,計算得到答案.【詳解】(1)由消得,即,是過原點且傾斜角為的直線,∴的極坐標方程為().(2)由得,∴,由得∴,∴.【點睛】本題考查了參數(shù)方程,極坐標方程,意在考查學生的計算能力和應用能力.20、(1)(2)是定值,且定值為2【解析】
(1)設出點坐標并代入橢圓方程,根據(jù)列方程,求得的值,結合求得的值,進而求得橢圓的方程.(2)設出直線的方程,聯(lián)立直線的方程和橢圓方程,求得點的橫坐標,聯(lián)立直線的方程和橢圓方程,求得,由此化簡求得為定值.【詳解】(1)已知點在橢圓:()上,可設,即,又,且,可得橢圓的方程為.(2)設直線的方程為:,則直線的方程為.聯(lián)立直線與橢圓的方程可得:,由,可得,聯(lián)立直線與橢圓的方程可得:,即,即.即為定值,且定值為2.【點睛】本小題主要考查本小題主要考查橢圓方程的求法,考查橢圓中的定值問題的求解,考查直線和橢圓的位置關系,考查運算求解能力,屬于中檔題.21、(1)(2)是,【解析】
(1)設,根據(jù)條件可求出的坐標,再利用在橢圓上,代入橢圓方程求出即可;(2)設運用勾股定理和點滿足橢圓方程,求出,,再利用焦半徑公式表示出,進而求出周長為定值.【詳解】(1)設,因為,即則,即,因為均在上,代入得,解得,所以橢圓的方程為;(2)由(1)得,作出示意圖,設切點為,則,同理即,所以,又,則的周長,所以周長為定值.【點睛】標準方程的求解,橢圓中的定值問題,考查焦半徑公式的運用,考查邏輯推理能力和運算求解能力,難度較難.22、(Ⅰ)極小值,極大值;(Ⅱ)或【解析】
(Ⅰ)根據(jù)偶函數(shù)定義列方程,解得.再求導數(shù),根據(jù)導函數(shù)零點列表分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025寫字樓租賃合同范本圖片
- 家庭健康咨詢服務協(xié)議書范本
- 圖書報刊贈與合同
- 私人土地流轉合同
- 2025光伏發(fā)電采購安裝合同范本
- 2025年上海房屋租賃合同的范本
- 2025電子產品購銷合同(批發(fā))
- 福州房屋合購協(xié)議書
- 2025年03月寧波市鄞州區(qū)事業(yè)單位公開招聘15人筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 2025年03月北京市經濟和信息化局直屬事業(yè)單位公開招聘工作人員5人筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 數(shù)學-河南省湘豫名校聯(lián)考2024-2025學年高三下學期春季學期第二次模擬考試(湘豫二模)試題和答案
- 中央2025年中國殘聯(lián)直屬單位招聘26人筆試歷年參考題庫附帶答案詳解
- 2025年廣西壯族自治區(qū)南寧市青秀區(qū)中考一模英語試題(含答案)
- GB/T 10810.2-2025眼鏡鏡片第2部分:漸變焦
- TSG-T7001-2023電梯監(jiān)督檢驗和定期檢驗規(guī)則宣貫解讀
- 中醫(yī)培訓課件:《中藥熱奄包技術》
- jgj t17-2008蒸壓加氣混凝土建筑應用技術
- 德育主題班會 《遵義會議》教學課件
- 高速鐵路知識.ppt課件
- 吹灰器檢修三措兩案
- 產品推介會策劃方案
評論
0/150
提交評論