![浙江省嘉興市第五高級中學2024屆高二數(shù)學第二學期期末質量跟蹤監(jiān)視模擬試題含解析_第1頁](http://file4.renrendoc.com/view10/M02/37/01/wKhkGWW75p-AECjHAAJZCGg_RGY193.jpg)
![浙江省嘉興市第五高級中學2024屆高二數(shù)學第二學期期末質量跟蹤監(jiān)視模擬試題含解析_第2頁](http://file4.renrendoc.com/view10/M02/37/01/wKhkGWW75p-AECjHAAJZCGg_RGY1932.jpg)
![浙江省嘉興市第五高級中學2024屆高二數(shù)學第二學期期末質量跟蹤監(jiān)視模擬試題含解析_第3頁](http://file4.renrendoc.com/view10/M02/37/01/wKhkGWW75p-AECjHAAJZCGg_RGY1933.jpg)
![浙江省嘉興市第五高級中學2024屆高二數(shù)學第二學期期末質量跟蹤監(jiān)視模擬試題含解析_第4頁](http://file4.renrendoc.com/view10/M02/37/01/wKhkGWW75p-AECjHAAJZCGg_RGY1934.jpg)
![浙江省嘉興市第五高級中學2024屆高二數(shù)學第二學期期末質量跟蹤監(jiān)視模擬試題含解析_第5頁](http://file4.renrendoc.com/view10/M02/37/01/wKhkGWW75p-AECjHAAJZCGg_RGY1935.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省嘉興市第五高級中學2024屆高二數(shù)學第二學期期末質量跟蹤監(jiān)視模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知某幾何體的三視圖如圖所示,其中正視圖和側視圖都由半圓及矩形組成,俯視圖由正方形及其內切圓組成,則該幾何體的表面積等于()A. B. C. D.2.若函數(shù)在上單調遞增,則的取值范圍是()A. B. C. D.3.“搜索指數(shù)”是網(wǎng)民通過搜索引擎,以每天搜索關鍵詞的次數(shù)為基礎所得到的統(tǒng)計指標.“搜索指數(shù)”越大,表示網(wǎng)民對該關鍵詞的搜索次數(shù)越多,對該關鍵詞相關的信息關注度也越高.如圖是2018年9月到2019年2月這半年中,某個關鍵詞的搜索指數(shù)變化的走勢圖.根據(jù)該走勢圖,下列結論正確的是()A.這半年中,網(wǎng)民對該關鍵詞相關的信息關注度呈周期性變化B.這半年中,網(wǎng)民對該關鍵詞相關的信息關注度不斷減弱C.從網(wǎng)民對該關鍵詞的搜索指數(shù)來看,去年10月份的方差小于11月份的方差D.從網(wǎng)民對該關鍵詞的搜索指數(shù)來看,去年12月份的平均值大于今年1月份的平均值4.在一次數(shù)學單元測驗中,甲、乙、丙、丁四名考生只有一名獲得了滿分.這四名考生的對話如下,甲:我沒考滿分;乙:丙考了滿分;丙:丁考了滿分;?。何覜]考滿分.其中只有一名考生說的是真話,則考得滿分的考生是()A.甲 B.乙 C.丙 D.丁5.某三棱錐的三視圖如圖所示,則該三棱錐四個面的面積中最大的是A. B.3C. D.6.用火柴棒擺“金魚”,如圖所示:按照上面的規(guī)律,第個“金魚”圖需要火柴棒的根數(shù)為()A. B.C. D.7.甲、乙兩人獨立地對同一目標各射擊一次,其命中率分別為,現(xiàn)已知目標被擊中,則它是被甲擊中的概率是()A. B. C. D.8.設是等差數(shù)列的前項和,已知,,則等于().A. B. C. D.9.的展開式中第5項的二項式系數(shù)是()A. B. C. D.10.(2017新課標全國I理科)記為等差數(shù)列的前項和.若,,則的公差為A.1 B.2C.4 D.811.設aR,則“a=1”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件12.設a,b,c為三角形ABC三邊長,a≠1,b<c,若logc+ba+logc-bA.銳角三角形B.直角三角形C.鈍角三角形D.無法確定二、填空題:本題共4小題,每小題5分,共20分。13.某學校為了了解住校學生每天在校平均開銷情況,隨機抽取了500名學生,他們的每天在校平均開銷都不低于20元且不超過60元,其頻率分布直方圖如圖所示,則其中每天在校平均開銷在元的學生人數(shù)為______.14.不等式的解集是_______.15.將10個志愿者名額分配給4個學校,要求每校至少有一個名額,則不同的名額分配方法共有______種.用數(shù)字作答16.我國古代數(shù)學名著《九章算術》的論割圓術中有:“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周盒體而無所失矣.”它體現(xiàn)了一種無限與有限的轉化過程.比如在表達式中“…”既代表無限次重復,但原式卻是個定值,它可以通過方程求得,類似上述過程,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求函數(shù)在點處的切線方程.(2)若對任意的恒成立,求實數(shù)的取值范圍.18.(12分)設數(shù)列的前項和為,且滿足.(1)若為等比數(shù)列,求的值及數(shù)列的通項公式;(2)在(1)的條件下,設,求數(shù)列的前項和.19.(12分)某地區(qū)為了解群眾上下班共享單車使用情況,根據(jù)年齡按分層抽樣的方式調查了該地區(qū)50名群眾,他們的年齡頻數(shù)及使用共享單車人數(shù)分布如下表:年齡段20~2930~3940~4950~60頻數(shù)1218155經(jīng)常使用共享單車61251(1)由以上統(tǒng)計數(shù)據(jù)完成下面的列聯(lián)表,并判斷是否有95%的把握認為以40歲為分界點對是否經(jīng)常使用共享單車有差異?年齡低于40歲年齡不低于40歲總計經(jīng)常使用共享單車不經(jīng)常使用共享單車總計附:,.0.250.150.100.0500.0250.0101.3232.0722.7063.8415.0246.635(2)若采用分層抽樣的方式從年齡低于40歲且經(jīng)常使用共享單車的群眾中選出6人,再從這6人中隨機抽取2人,求這2人中恰好有1人年齡在30~39歲的概率.20.(12分)已知函數(shù)f(x)=x(1)判斷并證明f(x)在[0,1(2)若x∈[-1,2],求21.(12分)設函數(shù).(1)求的單調區(qū)間;(2)求使對恒成立的的取值范圍.22.(10分)已知橢圓的離心率為,是橢圓上一點.(1)求橢圓的標準方程;(2)過橢圓右焦點的直線與橢圓交于兩點,是直線上任意一點.證明:直線的斜率成等差數(shù)列.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】
由三視圖可知,該幾何體由上下兩部分組成,下面是一個底面邊長為的正方形,高為的直四棱柱,上面是一個大圓與四棱柱的底面相切的半球,據(jù)此可以計算出結果.【題目詳解】解:由三視圖可知,該幾何體由上下兩部分組成,下面是一個底面邊長為的正方形,高為的直四棱柱,上面是一個大圓與四棱柱的底面相切的半球.表面積.故選:D.【題目點撥】本題考查三視圖求解幾何體的表面積,屬于基礎題.2、C【解題分析】試題分析:對恒成立,故,即恒成立,即對恒成立,構造,開口向下的二次函數(shù)的最小值的可能值為端點值,故只需保證,解得.故選C.【考點】三角變換及導數(shù)的應用【名師點睛】本題把導數(shù)與三角函數(shù)結合在一起進行考查,有所創(chuàng)新,求解的關鍵是把函數(shù)單調性轉化為不等式恒成立,再進一步轉化為二次函數(shù)在閉區(qū)間上的最值問題,注意與三角函數(shù)值域或最值有關的問題,即注意正、余弦函數(shù)的有界性.3、D【解題分析】
選項A錯,并無周期變化,選項B錯,并不是不斷減弱,中間有增強.C選項錯,10月的波動大小11月分,所以方差要大.D選項對,由圖可知,12月起到1月份有下降的趨勢,所以去年12月份的平均值大于今年1月份的平均值.選D.4、A【解題分析】
分析四人說的話,由丙、丁兩人一定是一真一假,分丙為真與丁為真進行推理判斷可得答案.【題目詳解】解:分析四人說的話,由丙、丁兩人一定是一真一假,若丙是真話,則甲也是真話,矛盾;若丁是真話,此時甲、乙、丙都是假話,甲考了滿分,故選:A.【題目點撥】本題主要考查合理推理與演繹推理,由丙、丁兩人一定是一真一假進行討論是解題的關鍵.5、C【解題分析】作出三棱錐P?ABC的直觀圖如圖所示,過A作AD⊥BC,垂足為D,連結PD.由三視圖可知PA⊥平面ABC,BD=AD=1,CD=PA=2,∴.∴,.∴三棱錐P?ABC的四個面中,側面PBC的面積最大.故選C.點睛:思考三視圖還原空間幾何體首先應深刻理解三視圖之間的關系,遵循“長對正,高平齊,寬相等”的基本原則,其內涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側視圖的高是幾何體的高,寬是幾何體的寬.6、D【解題分析】
由圖形間的關系可以看出,每多出一個小金魚,則要多出6根火柴棒,則火柴棒的個數(shù)組成了一個首項是8,公差是6的等差數(shù)列,寫出通項,求出第n項的火柴根數(shù)即可.【題目詳解】由圖形間的關系可以看出,每多出一個小金魚,則要多出6根火柴棒,第一個圖中有8根火柴棒組成,第二個圖中有8+6個火柴棒組成,第三個圖中有8+1×6個火柴組成,以此類推:組成n個系列正方形形的火柴棒的根數(shù)是8+6(n﹣1)∴第n個圖中的火柴棒有6n+1.故選:D.【題目點撥】本題考查歸納推理,考查等差數(shù)列的通項,解題的關鍵是看清隨著小金魚的增加,火柴的根數(shù)的變化趨勢,屬于基礎題.7、D【解題分析】分析:根據(jù)題意,記甲擊中目標為事件A,乙擊中目標為事件B,目標被擊中為事件C,由相互獨立事件的概率公式,計算可得目標被擊中的概率,進而由條件概率的公式,計算可得答案.詳解:根據(jù)題意,記甲擊中目標為事件A,乙擊中目標為事件B,目標被擊中為事件C,則P(C)=1﹣P()P()=1﹣(1﹣0.8)(1﹣0.5)=0.9;則目標是被甲擊中的概率為P=.故答案為:D.點睛:(1)本題主要考查獨立事件的概率和條件概率,意在考查學生對這些知識的掌握水平和分析推理能力.(2)條件概率的公式:,=.條件概率一般有“在已發(fā)生的條件下”這樣的關鍵詞,表明這個條件已經(jīng)發(fā)生,發(fā)生了才能稱為條件概率.但是有時也沒有,要靠自己利用條件概率的定義識別.8、C【解題分析】試題分析:依題意有,解得,所以.考點:等差數(shù)列的基本概念.【易錯點晴】本題主要考查等差數(shù)列的基本概念.在解有關等差數(shù)列的問題時可以考慮化歸為和等基本量,通過建立方程(組)獲得解.即等差數(shù)列的通項公式及前項和公式,共涉及五個量,知其中三個就能求另外兩個,即知三求二,多利用方程組的思想,體現(xiàn)了用方程的思想解決問題,注意要弄準它們的值.運用方程的思想解等差數(shù)列是常見題型,解決此類問題需要抓住基本量、,掌握好設未知數(shù)、列出方程、解方程三個環(huán)節(jié),常通過“設而不求,整體代入”來簡化運算.9、D【解題分析】試題分析:由二項展開式的通項公式得,第5項的二項式系數(shù)為.考點:二項式定理.10、C【解題分析】設公差為,,,聯(lián)立解得,故選C.點睛:求解等差數(shù)列基本量問題時,要多多使用等差數(shù)列的性質,如為等差數(shù)列,若,則.11、A【解題分析】試題分析:運用兩直線平行的充要條件得出l1與l2平行時a的值,而后運用充分必要條件的知識來解決即可.解:∵當a=1時,直線l1:x+2y﹣1=0與直線l2:x+2y+4=0,兩條直線的斜率都是﹣,截距不相等,得到兩條直線平行,故前者是后者的充分條件,∵當兩條直線平行時,得到,解得a=﹣2,a=1,∴后者不能推出前者,∴前者是后者的充分不必要條件.故選A.考點:必要條件、充分條件與充要條件的判斷;直線的一般式方程與直線的平行關系.12、B【解題分析】試題分析:兩邊除以logc+balogc-ba考點:1.解三角形;2.對數(shù)運算.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
由頻率分布直方圖得每天在校平均開銷在元的學生的頻率為,由此能求出每天在校平均開銷在元的學生人數(shù).【題目詳解】解:由頻率分布直方圖得:每天在校平均開銷在元的學生的頻率為:,每天在校平均開銷在元的學生人數(shù)為:.故答案為:1.【題目點撥】本題考查頻數(shù)的求法,考查頻率分布直方圖的性質等基礎知識,考查運算求解能力,考查函數(shù)與方程思想,是基礎題.14、【解題分析】
直接去掉絕對值即可得解.【題目詳解】由去絕對值可得即,故不等式的解集是.【題目點撥】本題考查了絕對值不等式的解法,屬于基礎題.15、84【解題分析】
根據(jù)題意,用隔板法分析:先將將10個名額排成一列,在空位中插入3個隔板,由組合數(shù)公式計算即可得答案.【題目詳解】根據(jù)題意,將10個名額排成一列,排好后,除去2端,有9個空位,在9個空位中插入3個隔板,可將10個名額分成4組,依次對應4個學校,則有種分配方法,故答案為:84.【題目點撥】本題考查組合數(shù)公式的應用,注意10個名額之間是相同的,運用隔板法求解,屬于基礎題.16、【解題分析】
先換元令,平方可得方程,解方程即可得到結果.【題目詳解】令,則兩邊平方得,得即,解得:或(舍去)本題正確結果:【題目點撥】本題考查新定義運算的問題,關鍵是讀懂已知條件所給的方程的形式,從而可利用換元法來進行求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解題分析】
(1)求出,然后算出和即可(2)由題意得,然后利用導數(shù)求出右邊的最大值即可【題目詳解】(1)切線方程為即(2)由題意令則只需,從而在上為增函數(shù),在上為減函數(shù).,實數(shù)的取值范圍為【題目點撥】恒成立問題或存在性問題,通常是通過分離變量,轉化為最值問題.18、(1),;(2).【解題分析】
(1)利用和關系得到,驗證時的情況得到,再利用等比數(shù)列公式得到數(shù)列的通項公式.(2)計算數(shù)列的通項公式,利用分組求和法得到答案.【題目詳解】(1)當時,,當時,,與已知式作差得,即,欲使為等比數(shù)列,則,又.故數(shù)列是以為首項,2為公比的等比數(shù)列,所以.(2)由(1)有得..【題目點撥】本題考查了等比數(shù)列的通項公式,分組求和法求前n項和,意在考查學生的計算能力.19、(1)見解析;(2)【解題分析】
(1)根據(jù)題意填寫列聯(lián)表,由表中數(shù)據(jù)計算觀測值,對照臨界值得出結論;(2)用分層抽樣法選出6人,利用列舉法求出基本事件數(shù),再計算所求的概率值.【題目詳解】(1)根據(jù)題意填寫2×2列聯(lián)表如下:年齡低于40歲年齡不低于40歲總計經(jīng)常使用共享單車18624不經(jīng)常使用共享單車121436總計302050由表中數(shù)據(jù),計算所以沒有95%的把握認為以40歲為分界點對是否經(jīng)常使用共享單車有差異.(2)用分層抽樣法選出6人,其中20~29歲的有2人,記為A、B,30~39歲的有4人,記為c、d、e、f,再從這6人中隨機抽取2人,基本事件為:AB、Ac、Ad、Ae、Af、Be、Bd、Be、Bf、cd、ce、cf、de、df、ef共15種不同取法;則抽取的這2人中恰好有1人年齡在30~39歲的基本事件為:Ac、Ad、Ae、Af、Bc、Bd、Be、Bf共8種不同取法;故所求的概率為.【題目點撥】本題考查了學生運用表格求相應統(tǒng)計數(shù)據(jù)的能力,會運用獨立性檢驗處理實際問題中的關聯(lián)性問題,考查了分層抽樣結果,以及求簡單隨機事件的概率,可以列舉法處理,屬于中檔題.20、(1)見解析,(2)[-1【解題分析】
(1)根據(jù)函數(shù)的單調性的定義證明即可;(2)根據(jù)函數(shù)的單調性,求出函數(shù)的值域即可.【題目詳解】解:(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 總經(jīng)理蔡仲斌在集團公司管理提升活動動員大會上的講話
- 2025年碳銨項目可行性研究報告
- 冷凍魚苗售賣合同范本
- 做飯保姆合同范本
- 債務轉移說明合同范例
- 保潔工人安全合同范本
- 出售照明工廠合同范本
- 公寓房裝修合同范例
- 2025年度金融產(chǎn)品廣告投放代理合同
- 代理股合同范本
- 2025年第六屆全國國家版圖知識競賽測試題庫及答案
- 2025年三方買賣協(xié)議標準版本(2篇)
- 2025年度文化演藝代理合作協(xié)議書4篇
- 【數(shù)學】2024-2025學年北師大版數(shù)學七年級下冊第四章三角形單元測試卷
- 輸變電工程監(jiān)督檢查標準化清單-質監(jiān)站檢查
- 2024-2025學年北京海淀區(qū)高二(上)期末生物試卷(含答案)
- 中國銀行招聘筆試沖刺題2025
- 《小腦梗死護理查房》課件
- 領導學 課件全套 孫健 第1-9章 領導要素- 領導力開發(fā)
- 《PC級自動轉換開關電器(ATSE)》
- 數(shù)字電子技術(武漢科技大學)知到智慧樹章節(jié)測試課后答案2024年秋武漢科技大學
評論
0/150
提交評論