版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
甘肅省廣河縣三甲集中學2024屆數(shù)學高二第二學期期末統(tǒng)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.對變量進行回歸分析時,依據(jù)得到的4個不同的回歸模型畫出殘差圖,則下列模型擬合精度最高的是()A. B.C. D.2.箱子中有標號為1,2,3,4,5,6且大小、形狀完全相同的6個球,從箱子中一次摸出兩個球,記下號碼并放回,如果兩球號碼之積是4的倍數(shù),則獲獎.若有4人參與摸獎,則恰好有3人獲獎的概率為()A.16625 B.96625 C.6243.已知橢圓:的右焦點為,過點的直線交橢圓于,兩點,若的中點坐標為,則橢圓的方程為()A. B. C. D.4.若,則復數(shù)在復平面上對應的點在A.第一象限 B.第二象限 C.第三象限 D.第四象限5.在長方體中,為棱的中點,則異面直線與所成角的余弦值為()A. B. C. D.6.集合,則等于()A. B. C. D.7.已知拋物線和直線,過點且與直線垂直的直線交拋物線于兩點,若點關于直線對稱,則()A.1 B.2 C.4 D.68.已知定義域為的函數(shù)滿足,,當時,則()A. B.3 C. D.49.函數(shù)f(x)的定義域為R,導函數(shù)f′(x)的圖象如圖所示,則函數(shù)f(x)().A.無極大值點,有四個極小值點B.有三個極大值點,兩個極小值點C.有兩個極大值點,兩個極小值點D.有四個極大值點,無極小值點10.設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是A.y與x具有正的線性相關關系B.回歸直線過樣本點的中心(,)C.若該大學某女生身高增加1cm,則其體重約增加0.85kgD.若該大學某女生身高為170cm,則可斷定其體重必為58.79kg11.已知,設的展開式的各項系數(shù)之和為,二項式系數(shù)之和為,若,則展開式中的系數(shù)為()A.-250 B.250 C.-500 D.50012.在20張百元紙幣中混有4張假幣,從中任意抽取2張,將其中一張在驗鈔機上檢驗發(fā)現(xiàn)是假幣,則這兩張都是假幣的概率是()A. B. C. D.以上都不正確二、填空題:本題共4小題,每小題5分,共20分。13.設實數(shù)x,y滿足,則的最小值為___________.14.已知,則________.15.一個豎直平面內的多邊形,用斜二測畫法得到的水平放置的直觀圖是一個邊長為的正方形,該正方形有一組對邊是水平的,則原多邊形的面積是______.16.在的展開式中,的系數(shù)為__________(用數(shù)字作答).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知關于的不等式的解集為(1)求實數(shù)的值;(2)求的最大值.18.(12分)已知過點A(0,2)的直線l與橢圓C:x2(1)若直線l的斜率為k,求k的取值范圍;(2)若以PQ為直徑的圓經過點E(1,0),求直線l的方程.19.(12分)已知數(shù)列的前項和,函數(shù)對任意的都有,數(shù)列滿足.(1)求數(shù)列,的通項公式;(2)若數(shù)列滿足,是數(shù)列的前項和,是否存在正實數(shù),使不等式對于一切的恒成立?若存在請求出的取值范圍;若不存在請說明理由.20.(12分)某企業(yè)有、兩個崗位招聘大學畢業(yè)生,其中第一天收到這兩個崗位投簡歷的大學生人數(shù)如下表:崗位崗位總計女生12820男生245680總計3664100(1)根據(jù)以上數(shù)據(jù)判斷是有的把握認為招聘的、兩個崗位與性別有關?(2)從投簡歷的女生中隨機抽取兩人,記其中投崗位的人數(shù)為,求的分布列和數(shù)學期望.參考公式:,其中.參考數(shù)據(jù):0.0500.0250.0103.8415.0246.63521.(12分)已知函數(shù),.(1)若不等式對任意的恒成立,求實數(shù)的取值范圍;(2)記表示中的最小值,若函數(shù)在內恰有一個零點,求實的取值范圍.22.(10分)已知函數(shù).(1)求的最小正周期和單調增區(qū)間;(2)求在區(qū)間上的最大值和最小值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】
根據(jù)殘差的特點,殘差點比較均勻地落在水平的帶狀區(qū)域中,說明這樣的模型比較合適.帶狀區(qū)域的寬度越窄,說明模型的擬合精度越高.即可得到答案.【題目詳解】用殘差圖判斷模型的擬合效果,殘差點比較均勻地落在水平的帶狀區(qū)域中,說明這樣的模型比較合適.帶狀區(qū)域的寬度越窄,說明模型的擬合精度越高.故選:.【題目點撥】本題考查了殘差分析,了解殘差分析的原理及特點是解決問題的關鍵,本題屬基礎題.2、B【解題分析】獲獎的概率為p=6C62=25,記獲獎的人數(shù)為ξ,ξ~B(4,3、A【解題分析】
設,,,,代入橢圓方程得,利用“點差法”可得.利用中點坐標公式可得,,利用斜率計算公式可得.于是得到,化為,再利用,即可解得,.進而得到橢圓的方程.【題目詳解】解:設,,,,代入橢圓方程得,相減得,.,,.,化為,又,解得,.橢圓的方程為.故選:.【題目點撥】熟練掌握“點差法”和中點坐標公式、斜率的計算公式是解題的關鍵.4、D【解題分析】分析:利用二次函數(shù)的性質可判定復數(shù)的實部大于零,虛部小于零,從而可得結果.詳解:因為,,所以復數(shù)在復平面上對應的點在第四象限,故選D.點睛:復數(shù)是高考中的必考知識,主要考查復數(shù)的概念及復數(shù)的運算.要注意對實部、虛部的理解,掌握純虛數(shù)、共軛復數(shù)這些重要概念,復數(shù)的運算主要考查除法運算,通過分母實數(shù)化轉化為復數(shù)的乘法,運算時特別要注意多項式相乘后的化簡,防止簡單問題出錯,造成不必要的失分.5、D【解題分析】
取CC1的中點F,連結DF,A1F,EF,推導出四邊形BCEF是平行四邊形,從而異面直線AE與A1D所成角即為相交直線DF與A1D所成角,由此能求出異面直線AE與A1D所成角的余弦值.【題目詳解】取的中點.連接.因為為棱的中點,所以,所以四邊形為平行四邊形.所以.故異面直線與所成的角即為相交直線與所成的角.因為,所以.所以.即為直角三角形,從而.故選D【題目點撥】本題考查異面直線所成角的余弦值的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.6、B【解題分析】試題分析:集合,,,,故選B.考點:指數(shù)函數(shù)、對數(shù)函數(shù)的性質及集合的運算.7、B【解題分析】
由于直線與直線垂直,且直線的斜率為1,所以直線的斜率為,而直線過點,所以可求出直線的方程,將直線的方程與拋物線方程聯(lián)立成方程組,求出的中點坐標,然后將其坐標代入中可求出的值.【題目詳解】解:由題意可得直線的方程為,設,由,得,所以,所以的中點坐標為,因為點關于直線對稱,所以,解得故選:B【題目點撥】此題考查直線與拋物線的位置關系,點關于直線的對稱問題,屬于基礎題.8、D【解題分析】
根據(jù)奇偶性和可知關于軸和對稱,由對稱性和周期性關系可確定周期為,進而將所求函數(shù)值化為,代入可求得結果.【題目詳解】,為偶函數(shù),圖象關于軸對稱;,關于直線對稱;是周期為的周期函數(shù),.故選:.【題目點撥】本題考查利用函數(shù)的性質求解函數(shù)值的問題,涉及到函數(shù)奇偶性、對稱性和周期性的應用;關鍵是能夠熟練掌握對稱性和周期性的關系,準確求得函數(shù)的周期性.9、C【解題分析】試題分析:所給圖象是導函數(shù)圖象,只需要找出與軸交點,才能找出原函數(shù)的單調區(qū)間,從而找出極值點;由本題圖中可見與有四個交點,其中兩個極大值,兩極小值.考點:函數(shù)的極值.10、D【解題分析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關關系,A正確;回歸直線過樣本點的中心(),B正確;該大學某女生身高增加1cm,預測其體重約增加0.85kg,C正確;該大學某女生身高為170cm,預測其體重約為0.85×170﹣85.71=58.79kg,D錯誤.故選D.11、A【解題分析】
分別計算各項系數(shù)之和為,二項式系數(shù)之和為,代入等式得到,再計算的系數(shù).【題目詳解】的展開式取得到二項式系數(shù)之和為取值為-250故答案選A【題目點撥】本題考查了二項式定理,計算出的值是解題的關鍵.12、A【解題分析】設事件A表示“抽到的兩張都是假鈔”,事件B表示“抽到的兩張至少有一張假鈔”,則所求的概率即P(A|B).又,由公式.本題選擇A選項.點睛:條件概率的求解方法:(1)利用定義,求P(A)和P(AB),則.(2)借助古典概型概率公式,先求事件A包含的基本事件數(shù)n(A),再求事件A與事件B的交事件中包含的基本事件數(shù)n(AB),得.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
由題意畫出可行域,令,轉化目標函數(shù)為,數(shù)形結合即可得解.【題目詳解】由題意畫出可行域,如圖,令,則,數(shù)形結合可知,當直線過點A時,取最小值,由可得點,所以.故答案為:.【題目點撥】本題考查了簡單的線性規(guī)劃,屬于基礎題.14、【解題分析】分析:由題意,利用目標角和已知角之間的關系,現(xiàn)利用誘導公式,在結合二倍角公式,即可求解.詳解:由題意,又由,所以.點睛:本題主要考查了三角函數(shù)的化簡求值問題,其中解答中正確構造已知角與求解角之間的關系,合理選擇三角恒等變換的公式是解答的關鍵,著重考查了分析問題和解答問題的能力,以及推理與運算能力.15、【解題分析】
根據(jù)斜二測畫法可知,原圖形中的高在直觀圖中變?yōu)樵瓉淼?,直觀圖中的高變?yōu)樵叩模瓉淼钠矫鎴D形與直觀圖的面積比是:1,計算即可.【題目詳解】該多邊形的直觀圖是一個邊長為的正方形,正方形的面積為,原多邊形的面積是.故答案為.【題目點撥】本題主要考查了斜二測畫法,原圖形與直觀圖面積的關系,屬于中檔題.16、60【解題分析】,它展開式中的第項為,令,則,的系數(shù)為,故答案為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)4【解題分析】
(1)先由可得,再利用關于的不等式的解集為可得,的值;(2)先將變形為,再利用柯西不等式可得的最大值.【題目詳解】(1)由,得則解得,(2)當且僅當,即時等號成立,故.18、(1)(-∞,-1)∪(1,+∞);(2)x=0或y=-7【解題分析】試題分析:(1)由題意設出直線l的方程,聯(lián)立直線方程與橢圓方程,化為關于的一元二次方程后由判別式大于求得的取值范圍;(2)設出的坐標,利用根與系數(shù)的關系得到的橫坐標的和與積,結合以為直徑的圓經過點,由EP·EQ=0求得值,則直線l方程可求.試題解析:(1)依題意,直線l的方程為y=kx+2,由x23+y2=1y=kx+2,消去y得(3k2+1)x(2)當直線l的斜率不存在時,直線l的方程為x=0,則P(0,1),Q(0,-1),此時以為直徑的圓過點E(1,0),滿足題意.直線l的斜率存在時,設直線l的方程為y=kx+2,P(x1,y1),Q(x2EP=(k2+1)因為以直徑的圓過點E(1,0),所以EP·EQ=0,即12k+143k2故直線l的方程為y=-76x+2.綜上,所求直線l的方程為x=0考點:1.直線與橢圓的綜合問題;2.韋達定理.【方法點睛】本題主要考查的是橢圓的簡單性質,直線與圓錐曲線位置關系的應用,體現(xiàn)了設而不求的解題思想方法,是中檔題,本題(1)問主要是聯(lián)立直線與橢圓方程,化成一元二次方程的判別式大于求出的取值范圍,(2)利用EP·EQ=0求出值,進而求出直線方程,因此解決直線與圓錐曲線位置關系時應該熟練運用韋達定理解題.19、(1),;(2).【解題分析】分析:(1)利用的關系,求解;倒序相加求。(2)先用錯位相減求,分離參數(shù),使得對于一切的恒成立,轉化為求的最值。詳解:(1)時滿足上式,故∵=1∴∵①∴②∴①+②,得.(2)∵,∴∴①,②①-②得即要使得不等式恒成立,恒成立對于一切的恒成立,即,令,則當且僅當時等號成立,故所以為所求.點睛:1、,一定要注意,當時要驗證是否滿足數(shù)列。2、等比乘等差結構的數(shù)列用錯位相減。3、數(shù)列中的恒成立問題與函數(shù)中的恒成立問題解法一致。20、(1)有的把握認為招聘的、兩個崗位與性別有關.(2)見解析.【解題分析】分析:(1)根據(jù)所給公式直接計算求解作答即可;(2)先分析此分布為超幾何分布,然后確定X的取值可能,根據(jù)超幾分布求解概率寫分布列即可.詳解:(1),故有的把握認為招聘的、兩個崗位與性別有關.(2)的可能取值為0,1,2,,,.∴的分布列為012.點睛:考查獨立性檢驗和離散型隨機變量分分布列,屬于基
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024裝修合同中的采購合同范本
- 2025版塑料回收利用項目投資合作合同范本3篇
- 2025年度生態(tài)大棚建筑與生態(tài)農業(yè)示范項目合同4篇
- 2025年度企業(yè)間知識產權歸屬及合作開發(fā)協(xié)議
- 2025年度銷售業(yè)務員銷售渠道拓展合同
- 二零二五年度商標權授權合同補充協(xié)議
- 2025年度自愿不上學協(xié)議書-家庭教育支持與子女學業(yè)規(guī)劃合同
- 二零二五年度汽車抵押借款合同書合同解除通知
- 2025年度新型車間租賃安全協(xié)議書模板4篇
- 2025年度高新技術企業(yè)研發(fā)設備采購咨詢及招標代理服務協(xié)議3篇
- 2024年醫(yī)銷售藥銷售工作總結
- GB/T 44888-2024政務服務大廳智能化建設指南
- 2023-2024學年江西省萍鄉(xiāng)市八年級(上)期末物理試卷
- 四則混合運算100道題四年級上冊及答案
- 四川省高職單招電氣技術類《電子基礎》歷年考試真題試題庫(含答案)
- 2024年江西生物科技職業(yè)學院單招職業(yè)技能測試題庫帶解析答案
- 橋本甲狀腺炎-90天治療方案
- (2024年)安全注射培訓課件
- 2024版《建設工程開工、停工、復工安全管理臺賬表格(流程圖、申請表、報審表、考核表、通知單等)》模版
- 部編版《道德與法治》六年級下冊教材分析萬永霞
- 酒店人防管理制度
評論
0/150
提交評論