




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
StellarMassGravityandOrbits(2)NewtonianGravity
anexplanationforplanetarymotionsNewton’s3LawsofMotionstarting-pointNecessaryingredienttocalculatemotionsExactdescriptionofforcesinvolvedHowtoquantifygravity?Galileo’sLawofFallingBodiesNewton,theAppleandtheMoon!Galileo’sMechanicsExperimentsPriortoworkwithtelescope,Galileoperformedfundamentalresearchonmotion.Exploredtherateoffallingbodiesbydroppingdifferentweights,orslidingthemdowninclinedplanes.LawofFallingBodies:Intheabsenceofair,heavyobjectsandlightobjectsfallatthesame,constantrateofacceleration.AstronautDavidR.Scott,Apollo15(Falcon)nearHadleyRille,August1971TheIdeaofUniversalMutualGravitationNewton,inhisPrincipia,formulatedtheLawofUniversalMutualGravitation:GravityisanAttractiveforce:Workstobringmassiveobjectsclosertogether.GravityisaUniversalforce:WorkseverywhereintheUniverse.GravityisaMutualforce:Worksbetweenpairsofmassiveobjects.TowardsanexactdescriptionForceofgravitybetweenanytwoobjectsdependsonlyupon:Themassesofthetwoobjects:Moremassiveobjectsfeelastrongerforce.Thedistancebetweenthem:Objectsclosertogetherfeelastrongerforce.Itdoesnotdependatallontheshapes,colors,orcompositionsofthetwoobjects.TowardsanexactdescriptionNewton’sIdea:ForcedependslinearlyonmassesofobjectsTwiceasmuchmasstwicetheforceHalfasmuchmasshalftheforceNewton’sLawsthenguaranteeGalileo’sobservationofFallingBodiesWhatisthedependenceondistance?ComparinganappletothemoonNewton’sfascinatingthoughtprocess:Assumptions:FallofanappleandpathofmoongovernedbythesameprincipleGravitationalattraction(only!)GravityindependentofshapeofEarthCarefulnumericalanalysisleadstodeeperunderstandingofgravityWhatNewtonknewaboutapplesFallingapplesonEarth:ConstantaccelerationnearsurfaceofEarth:a=9.8meters/second2RadiusofEarth:6378km=6378,000meters(Eratosthenes!)WhatNewtonknewabouttheMoonDistancetotheMoon~380,000km=~60xEarthradiusSiderealOrbitalPeriod28.3daysSpeedofMoononitspath:~1000m/secDeflectionACurvedPathBut,ofcoursetheMoonreallymovesalongacurvedpath:Accordingtothefirstlaw,itisdeflectedfromastraight-linepathbytheforceofgravity.ThiscausesthemoontofallalittlebittowardstheEarth,deflectingitspathintoanarc.ThecurvedpathoftheMoonHowmuchdoesthemoonhavetofallin1secondto‘closetheloop’?Simplegeometry:0.00136meters(about1.4mm!)Newton’scleveridea:comparetoapple’sfall!ComparingappleandMoonAppleonEarthfallsin1second:dApple
=4.8mMoonfallsin1second:dMoon
=0.00136metersRatioofthesedistances=ratioofaccelerations=ratioofforcesdApple/dMoon=4.8m/0.00136m~3600ComparingappleandMoonRatioofforces:FApple/FMoon
~3600RatioofdistancesfromcenterofEarth:Dapple-Earth/DMoon-Earth~60Pricewinningquestion:Whatistherelationbetweenthesetworatios?Newton’sexactformulaTheforceofgravitationalattractionbetweenanytwomassivebodiesisproportionaltotheirmassesandinverselyproportionaltothesquareofthedistancebetweentheircenters.GravitationalForceLawF=forceduetogravity.M1=massofthefirstobjectM2=massofthesecondobjectd=distancebetweentheircenters.G=“GravitationalForceConstant”2M1M2dM1M2d2M12M2dM1M2dM1M22dM1M2d/2Whyisthissuchapowerfulconcept?
TheLawofGravityisUniversal:GovernsthefallofapplesontheEarthGovernsthefalloftheMoonaroundtheEarthGovernsthefalloftheEarth/MoonsystemaroundtheSunGovernsthefalloftheSunaroundthecenteroftheMilkyWayGalaxy.GovernsthefalloftheMilkyWayandAndromedaGalaxiesintheirmutualorbit...TheGravitationalForceConstantTheforceconstant,G,isanumberwhichgivesthesizeofthegravitationalcouplingbetweentwomassiveobjects.Gisverysmall,inmetricunits:G=6.710–11Newtonsmeter2/kilogram2TheNewtonisthemetricunitofforce:4.41Newtons=1poundGhastobemeasuredexperimentally.Example1:WeighingtheEarthMeasuretheaccelerationofgravitybydroppingweights(Galileo):a=9.8meters/second2MeasuretheradiusoftheEarthusinggeometry(Eratosthenes):RE=6378kilometers=6,378,000metersEarth’sMassis:Example2:TheConceptofMutualityWhatistheforceoftheEarthontheappleF=GMEMA/RE2Whatistheapple’sacceleration(2ndLaw):a=F/MA=GME/RE2
=9.8meters/sec2Theaccelerationduetogravityisindependentofthemassoftheapple!Example2:TheConceptofMutualityThethirdlawsaysthatallforcescomeinequalyetoppositepairs.WhatistheforceoftheappleontheEarthF=GMEMA/RE2HowmuchdoestheEarthacceleratetowardstheapple?a=F/ME=GMA/RE2a=9.8m/sec2
(MA/ME)=verysmallamountSecondLawofOrbitalMotionOrbitalmotionsconserveangularmomentum.Thisdoesn’tsoundmuchlike“equalareasinequaltimes”,butinfactitisthesamething.AngularMomentum:L=mvr=constantm=mass,v=velocity,r=distancefromthecenterofmass.AngularMomentum&EqualAreasLisaconstant.Ifthedistancechanges,thevelocitymustchangetocompensate:NearPerihelion:Planetisclosertothesun,hencesmallerrSpeedincreasesproportionallytocompensate.NearAphelion:Planetisfartherfromthesun,hencelargerrSpeeddecreasesproportionallytocompensate.ThirdLawofOrbitalMotionNewton’sGeneralizationofKepler’s3rdLaw:P=periodoftheorbita=semi-majoraxisoftheorbitM1=massofthefirstbodyM2=massofthesecondbodyAThirdLawforEveryBodyTheproportionalitynowdependsonthemassesofthetwobodies.ForplanetsorbitingtheSun,Msunissomuchbiggerthananyplanet(evenJupiter,at1/1000thMsun),werecoverKepler’sversion:MeasuringMassesNewton’sformofKepler’s3rdlawisawaytomeasuremassesfromorbitalmotions!MassoftheSunfromtheEarth’sorbit:Pearth=1year=3.156107secondsaearth=1AU=1.4961011metersUniversalMethodforMassesMeasuremassofJupiterfromtheorbitsoftheGalileanmoons,sinceMJupiter>>MmoonsFindMJupiter
300MearthMeasurethemassoftheEarthandMoonbymeasuringtheirorbitalparameters.Earthisonly~81xmoremassivethantheMoon,soyouhavetousethefullformula.Measurethemassesofbinarystarsusingthefullformula.ThePredictivePowerofGravityNewton’sdescriptionofplanetarypositionsisonlyastart.Italsoallowsquantitativenewpredictions.Halley’sComet:UsingNewtonianGravity,EdmundHalleyfoundthattheorbitofthegreatcometof1682wassimilartocometsseenin1607and1537.Predicteditwouldreturnin1758/59.Itdid,dramaticallyconfirmingNewton’slaws.TheDiscrepantOrbitofUranusIn1781,WilliamHerscheldiscoveredtheplanetUranusorbitingbeyondSaturn.By1840,thediscrepanciesbetweenthepredictedandactualpositionsofUranusgrewlargerthan1arcminute.Twotheorists,AdamsintheUKandLeverrierinFrance,predictedthatthedeviationswereduetothegravitationalinfluenceofanother,unknownmassiveplanetbeyondUranus.TheDiscoveryofNeptuneUsingthedeviantmotionsofUranus,theyindependentlycalculatedwherethisunknown8thplanetshouldbe.AdamswasignoredbyEnglishastronomers.LeverrierconvincedGalleinBerlintosearch.OnSept23,1845,GallefoundNeptuneonly52arcminutesfromwhereAdamsandLeverrierpredicteditwouldbe!TheWhyofPlanetaryMotionsKepler’sLawsaredescriptionsofthemotion:Arrivedatbytrialanderror,andsomevaguenotionsaboutcelestialharmoniesOnlydescribethemotions,withoutexplainingwhytheymovethatway.Newtonprovidestheexplanation:Kepler’sLawsareanaturalconsequenceofNewton’s3LawsofMotionandgravitation.Givesthelawspredictivepower.
雙星和恒星的質(zhì)量
(17.9)1.雙星(binarystars)由在彼此引力作用下以橢圓軌道互相繞轉(zhuǎn)的兩顆恒星組成的雙星系統(tǒng)。大部分的恒星位于雙星和聚星系統(tǒng)中。研究雙星的意義→驗證萬有引力定律→測量恒星質(zhì)量→研究恒星結(jié)構(gòu)(形狀、大小、大氣)→研究恒星演化→研究物質(zhì)交流和吸積過程2.目視雙星和恒星質(zhì)量的測定
(1)目視雙星(visualbinaries)在望遠(yuǎn)鏡內(nèi)能夠分辨出兩顆子星的雙星系統(tǒng)。Krueger60ABinaryStarSystem雙星的軌道運動
兩顆子星圍繞公共質(zhì)心作橢圓運動,半長徑分別為a1和a2.公共質(zhì)心位于橢圓的焦點上,子星在運動時與公共質(zhì)心始終位于一條直線上。橢圓軌道的大小與子星的質(zhì)量有關(guān),
M1a1=M2a2如果以一顆子星以參照點,另一顆子星的相對運動也是一個橢圓,其半長徑為
a=a1+a2aa1a2CMRemovingthetiltfromavisualbinary'sorbit
目視雙星質(zhì)量的測定
利用Kepler第三定律和Newton萬有引力定律得到:以太陽-地球系統(tǒng)為參照其中a,P為雙星的軌道半長徑和周期。(2)天體測量雙星(astrometricbinaries)
某些雙星的一顆子星較暗,很難觀測到,但通過較亮子星的自行軌跡的變化推測其伴星的存在。雙星系統(tǒng)的質(zhì)心以直線運動,但每一顆子星的運動軌跡是波浪形的, 如天狼星(Sirius)。TheMotionofSiriusAandB3.分光雙星(spectroscopicbinaries)
通過子星軌道運動引起的譜線的Doppler位移確定其雙星性質(zhì)。 雙線、單線分光雙星。
譜線位移量也與雙星軌道傾角的大小有關(guān)。AABBBAAB視向速度曲線
(radialvelocitycurve)由子星譜線的Doppler位移得到的子星的視向速度隨時間的變化曲線。如子星1的軌道運動速度為V1,0,雙星軌道平面的法線與視線的夾角為i,它的視向速度為由于得到
且
4.食雙星(eclipsingbinaries)子星相互交食造成亮度變化的雙星。光變曲線(lightcurve):子星間的相互交食造成雙星亮度的變化曲線。由光變曲線可以得到: 兩顆子星的溫度比、軌道傾角(→恒星質(zhì)量)和恒星的大小。
EclipsingBinaryTime31Brightness421324Algol(BetaPersei),thePrototypeEclipsingBinaryDipsfrommagnitude2.1to3.4every2.87days.Eacheclipse,includingthepartialphases,takesnearly10hours.
MeasureMassofaSingleStar
Astronomershavedirectlymeasuredthemassofasinglestar—thefirsttimeforanysolitarystarotherthanourownSun.Themeasurementhasbeendoneonasmallredstarlocatedsome1,800light-yearsfromEarth,byuseoftheeffectofmicrolensing.5.主序星的質(zhì)光關(guān)系和質(zhì)量-半徑關(guān)系
恒星的質(zhì)量和密度分布:~<0.1
~>10010-6
1.4
106褐矮星超巨星太陽
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 科普器材出售合同范本
- BOD自動在線監(jiān)測儀產(chǎn)業(yè)分析報告
- 體外診斷產(chǎn)品競爭策略分析報告
- 余土外運合同范本
- 廠房中介出售合同范本
- 中級電工模擬試題+參考答案
- 鹵菜設(shè)備買賣合同范本
- 固定金額合同范本
- 原礦合同范本
- 七年級下冊的語文教學(xué)計劃
- 2023年7月浙江省普通高中學(xué)業(yè)水平考試(學(xué)考)語文試題答案
- 2024年計算機軟件水平考試-初級信息處理技術(shù)員考試近5年真題集錦(頻考類試題)帶答案
- 發(fā)熱病人護理課件
- 幼兒園中班安全《不動手打人》課件
- 遼寧沈陽歷年中考語文現(xiàn)代文之說明文閱讀11篇(含答案)(2003-2022)
- 【正版授權(quán)】 ISO 7241:2023 EN Hydraulic fluid power - Dimensions and requirements of quick-action couplings
- 勞動項目一 剪指甲 教案
- 母嬰護理培訓(xùn)課件
- 2024年江蘇農(nóng)林職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫各版本
- 汽車制造企業(yè)物流自動化
- 《德伯家的苔絲》
評論
0/150
提交評論