




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
ControlNumber501PAGEPagePAGE1ofNUMPAGES27SummaryTheQuickPasssystemallowsthetouriststodoubleusetheoriginalwaitingtimeandoffersthemmoretimeforotheractivitiesinthepark.However,therestillexitsomeproblemsinthecurrentQPsystem.Inthispaper,weanalyzetheexistingQPsystem,proposebetterQPschemes,andtesttheirvalidity.AfterthecarefulanalysisofthecommonpursuitoftouristsandCEOs,weconcludethattheprincipleobjectiveofaQPsystemistoincreasetheaveragefreetimeoftourists.Thisincrementisdirectlyreflectedinthedecreaseofthelengthofawaitingline.Empirically,weassumethatthelengthofaregularlinehasanoptimalvalue.WealsosetalimittothelengthofthelineforQPholders.WhenformulatingQPschemes,themostimportantfactoristhereturntimedesignatedtoeachtourist.First,weproposeScheme1,asimplifiedversionoftherealQPsystem,inwhichthereturntimeisdeterminedbythecurrentlengthoftheregularline.Weusetheresultofthisschemeasthebaselineofanalyzingthelaterschemes.ThenwetakeintoaccountthenumberofQPholdersinthevirtuallineandcreateScheme2.ThisisaFIFOsystemandthuscanavoidtheproblemoftheinstabilityoftheassignedreturntime.InScheme3,wepredictthearrivalpatternofthedayunderdiscussionusingthehistoricaldataandcomeupwithanalgorithmthatguaranteesthereturningQPholderstoavoidthepeaktimeoftourists’arrival.Scheme3cansuccessfullyimprovetheperformanceofthesystem.BasedonScheme3,wefurtherrecordthereturntimeofeachQPholderinthevirtuallineandintroduceScheme4.WestaggerthereturntimeofQPholdersandthuscontrolthelengthofthelineforreturningQPholderswithinadesirablelevel.Finally,weformulateScheme5fromanewperspective.Thisnewschemewillmakesurethateachdesignatedreturntimemaximizesthefreetimeincrementofthesystem!Astheextensionofthismodel,wealsoproposeasystemwithpartialpriorityforQPholders.WebrieflycomparethenewsystemwiththeoriginalQPsystemwithabsolutepriorityandrecommendthesituationsofintroducingthispartialprioritystrategy.Totesttheaboveschemes,weestablishaconsideratesimulationprogram,takingintoaccountmanycomplexfactorsintherealworldsituation.Thenwehavethepowerfulweapontotestourproposedschemes.Basedontheresultsofsimulation,wecometosomeusefulconclusionsandstrongrecommendationsfortheCEOs:Thetwocriteriaofevaluatingaschemearethefreetimeincrementandtheregularlinelength.Thetwoquantitiesfollowalinearrelationshipapproximately.AftertheimplementationofQPsystems,thelengthofregularlinereducesbyabout20%.Tomaintainthelengthofregularlinewithinaproperrange,anappropriatenumberofQPticketsshouldbeissued.Itisimportanttoaccumulateandupdatethehistoricaldata.
TheQuickPassStrategy1AnalysisoftheProblemNowadays,theemergenceof"QuickPass"systemhasreducedthepeople’stimewaitinginlineandthushasbeenwidelyusedinmanyareas.Especiallyinamusementparks,thesystemhelpthetouristsgetridofthehorriblylongwaitinglineandofferthemmoretimeforotherrecreationalactivities.Itseemstobeawin-winstrategy.WehaveaccumulatedlotsofcommentspraisingtheintroducingofthissystembothfromtouristsandCEOsoftheparks.However,doestheQuickPassreallyhavethegreatpowertoenhancethesatisfactionoftouristsononehandandontheother,tobringmoreprofitstothebusinessmen?Actually,wehavefoundsome“necessaryevils”fromtheQuickPasssystem(wewillcallitQPforshort),whichweshouldpayspecialattentionto:AlongreturntimedesignatedbyQuickPass(say,6-8hours)willblockatouristfromgettinganyfurtherQPfortherestoftheday!AtouristmaynotgetaQPfromabigattractionlateinaday.Thereturntimemaybecomeunstablesometimes.Forinstance,atouristmayfinditunfairtobeassignedtoreturn4hourslaterwhenheobservesthatjustashortlateronthesameride,theQuickPasswasgivenforanhourorsolater.PerhapsthemostdissatisfactorysituationisthattheQPholdersreturntotheridehappilyonlytofindthattheystillhavetowaitinalinenearlyaslongastheregularlines.Accordingtothosedrawbacks(maybemore),itisclearthatthere’sstillgreatneedtoimprovethecurrentsystem.Ourtaskisanalyzingtheproblemsintheoldsystem,proposingourbetterstrategiesandthentestingthevalidityofourschemes.Moreover,wewillcomeupwithsomekeycriteriatoevaluatetheQPschemesbasedonourmodel.Beforeestablishingourmathmodel,itisimportanttogetadeeperunderstandingofthe“QuickPass”System.ThekeywordinaQuickPassSystemis“virtualline”.Thisconceptderivesfromaverysimpleidea,thatis,tousesomecertainformtorecordthepositionofapeopleinaline,toestimatethetimefromnowonuntilhegetstheserviceandtoassignareturntimeforthepeople.Thesystemthenallowsthepeopleto“idle”duringtheperiodofhisoriginalwaitingtime,doingwhateverhewants,solongashereturnstoaccepttheserviceatthedesignatedtime.Disneylandisoneofthefirstamusementparkswhoadoptthiskindofsystem,namely,FastPass,andthecompanyhasachievedsomesuccess.Inthepast,touristsvisitingDisneylandcomplainironicallythatthe“mostfrequentactivity”issimplytowaitinaline!Althoughitmaybealittleexaggerating,thelongwaitinglineisindeedtheNO.1headacheofbothtouristsandtheCEO.Obviously,itiscausedbythecontradictionbetweentheever-increasingtouristsandthelimitedcapacityofsomehotattractions.Longwaitinglineswillnotonlycauselargeamountsofcomplaintsfromtouristsbutalsothelackoftimeforthemtogoshoppingordininginthepark,whichisagainstthehopeoftheCEO?(Sincetouristsdonotbuyextraticketsaftertheyenterthepark,theprofitgainfromshoppingcentersorrestaurantsistheonlypossiblesourceforprofitincrement.)Therefore,DisneylandintroducestheFastPasssystemtoskillfullyallocatetourists’timeandmakespossiblethedoubleuseoftheirtime.NowwehavegotsomeideaofthereasonforintroducingtheQuickPasssystem.ButwestillwouldliketofurtherexploretheexpectedbenefitsoftheQPsystemfromtwodifferentperspectives:theenjoymentrelatedconsiderationoftouristsandtheprofitrelatedconsiderationsofCEOs.TouristsToplayinasmanyattractionsaspossibleOfcourseitisthesincerehopeofeverytouristsandtoday’sQPsystemfacilitatetherealizationofthishope.Ourschemeswillfurtherimprovetheenjoymentoftourists.ToreducethewaitingtimeQPsystemwillgivetouristsmoretimeforotheractivities,includingplayinginmoreattractions.Therefore,thisfactorincorporatesthefirstone.CEOs1.TostretchtheaveragefreetimeforeachtouristThe“averagefreetimeofatourist”isdefinedastheaveragevalueofatourist’stotaltimeusedintheparkminusthetimeusedtowaitinlinesandactuallyplayinattractions.TheincreaseofthistimemeansthatthelikelihoodforthetouriststogoshoppingordiningintheparkmaybecomelargerandsodoesthelikelihoodfortheCEOstoearnmoreprofitgains(althoughwecannotexactlycontrolthebehavioroftourists).Ontheotherhand,touristsalsoprefertohavemorefreetimeforplayingorshoppingratherthanpassivelywaitinanendlessline.Weputemphasisontheincreaseofaveragefreetimeforallthetourists,includingQPholdersandtouristsintheregularline.Obviously,QPsystemcanincreasethefreetimeofthoseQPholders,butatthesametimesomeoftheQPstrategiesmayalsostretchthewaitingtimeofthoseintheregularlines.SincetotheCEOsthetwogroupsoftouristshaveequalstatus,weshouldtakeintoaccounttheinterestsofbothgroups.SomeofourQPschemescanincreasethefreetimeforbothQPholdersandregulartourists.2.TomaintainawaitinglinewithappropriatelengthinfrontofeachattractionThisstatementmayseemalittleconfusingatthefirstsight,butaccordingtothecommentsfrommanyCEOSofamusementparks,theyhopethatthereisawaitinglineinfrontofeachattractionbecauseitisasymbolofattractivenessofthisattraction.Obviously,theQPrulestrytoreducethewaitingline.ButthegoalofourQPsystemistomaintainawaitinglinewithappropriatelengthinsteadofeliminatingtheline.Fromtheaboveanalysis,wefindthatthepursuitsofCEOandtouristsarequitesimilar:morefreetimefortourists.WithregardtothesecondhopeofCEO,althoughitisobviouslynotthehopeoftourists,mosttouristsarewillingtoacceptalinewithanappropriatelength,especiallyinathemepark.2AssumptionsAtouristonlybuysonetickettoenteranamusementparkandnoextramoneyforplayinginanyattraction.Butgoingshoppingordiningintheparkisextracost.TouristscanfreelychoosewhetherornottorequestaQPticket.EverytouristisallowedtohaveonlyoneQPticketatatime.Thelengthofreturntimewindowisaconstantvalue.Acertainpercentage(1-m%)ofQPholderswillreturntotheattractionatthedesignatedtime.OverdueQPticketisinvalid.Thereisnobreakdownofanattractionandstaffsoftheattractionarealwaysworkingduringbusinesshours.Therefore,thecapacityofanattractionremainsconstantduringaday.3TermsandDefinitionNameDefinitionrithearrivetimeoftouristiqithelengthofregularlinewhentouristiarrivesvithelengthofvirtualline(thenumberofthepreviousvalidQPholders)whentouristiarrivesTithereturntimeoftheithtouristifhe/sheiswillingtohaveaQPWithereturntimewindowoftheithtouristifhe/sheiswillingtohaveaQPCjthecapacityofattractionj(thenumberoftouriststhatitcanserveatatime)m%theno-showrateofQPholders
4Model1QPSystemwithAbsolutePriority4.1ACoarseQuantitativeAnalysisofQPSystemWefirstdosomecoarsemathematicalestimateofaQPsystem.WehopetofindthepossibleinteractionbetweenQPholdersandtheregulartourists.WesimplifytheproblembynotconsideringtheconcreteQPrules.AnattractionthatusesQPrulesisreducedtoasingle-serversystemwithtwokindsofclients:QPtouristsandnon-QPtourists.Onaverage,λ1QPtouristsandλ2non-QPtouristsarriveattheattractioneachtimeunit.QPtouristshavepriorityandthusnon-QPtouristscannotgettheservicesolongasthereareQPtouristsinthesystem.Thenwetrytofindsomeconclusionsinthesenseofstatisticalaverage.WedescribethestateofaQPsystematthetimeinstanttasN(t)=(i,j)whichmeansthatthereareiQPtouristsandjnon-QPtouristsinthesystematthismoment.SetPi,j(t)equaltoP{N(t)=(i,j)},denotingtheprobabilityoftheappearanceofstateN(t).AfterallthesimplificationsitbecomesaMarkovprocess.Thestatetransitionequationsareasfollows:Aftertransposing,wedividethetwosidesoftheequationsbyΔtandsetΔtgotozero,yielding:AccordingtotheMarkovlimittheorem(K.LChung(1960)[42],Part2),weknowthatthelimitofastgoestoinfinityexists(denotedbyPi,j).Intheequations(2),weset.Thenthederivativesontheleftsidegotozeroandwegetlinearfunctionsasfollows:Thegeneralsolutionofequations(3)seemstobedifficulttofind.Fortunately,welearnthe“MotherFunction”methodofsolvingforsuchequationsinamonographofrandomservicesystem[Ref1].Usingthismethod,weobtaintheexpressionoftheaveragenumberofnon-QPtouristsinthesystemthatreflecttheinfluenceofQPholdersinthesystem.([Ref1]showsthebasicmethodweusedtosolvefortheequations.)Theaveragenumberofnon-QPtouristsis(4)whereλ1,λ2arerespectivelytheaveragenumberofQPtouristsandnon-QPtouristsarrivinginthesystemeachtimeunit,anduistheaveragenumberoftouriststheattractioncanserveeachtimeunit.Inourcase,uequalstothecapacityoftheattractiondividedbythetimeofplayingintheattractionforonetime,whichisaconstantvalue.Wecanseefromtheaboveexpressionthattheaveragenumberofnon-QPtouristsremaininginthesystemwillgoupwiththeriseofthearrivingdensityofQPtourists.Therefore,themoretouristsholdQPtickets,themorenon-QPtouristsmayhavetowaitintheline.Itseemstobeapessimisticestimate,sincetheimplementationofQPrulesmaycausethelengtheningofwaitinglineformanynon-QPtourists.However,sincethisisaverycoarseestimate,withoutconsideringtheconcreterulesofaQPsystem,theconclusionsabovecanprovidelimitedguidance.Actually,laterwewillfindthatwiththeimplementationofappropriateQPrules,wecanavoidsuchexacerbatingsituation.4.2QPSchemesAQPsystemhasseveralkeyfactors,say,whetherornotanattractionshoulduseQPrules,thenumberofQPticketsanattractioncanissueduringaday,etc.Butthemostimportanttaskistodeterminethereturntimeandthereturntimewindowforeverytouristuponarrivalbasedonthecurrentdata.Inourmodel,wewillalsoputemphasisontheschemetofindoutthevalueofthesetwokeyquantities.Firstofall,weofferasimpleruletodeterminewhetherornotanattractionshouldintroduceQPrules.AccordingtothecommentsfrommanyCEOs,tomaintainawaitinglineofappropriatelengthisdesirable.Ofcoursethelineshouldnotbetoolong.Therefore,weempiricallysetanoptimallengthofawaitingline.Basedontheinformationwehaveaccumulated,thewaitingtimeoftenminutesisacceptabletomosttouristsinalargeamusementpark.Therefore,weassigntheoptimallengthofregularlineofanattractionasthenumberoftouriststheattractioncanserveintenminutes.Iftheaveragelengthofthewaitinglineisshorterthanthisoptimalvalue,thereisnoneedfortheattractiontouseQPrules.NowwefocusononespecificattractionusingQPrules.Weonlyconsideroneattractionsincewebelievethattheinfluenceofotherattractionsisonlyreflectedinthehistoricaldata(say,theaveragenumberofpeoplewhoarriveattheattractionduringacertainperiodoftime),whichwewillalsotakeintoaccountinourschemes.
4.2.1Scheme1Atfirst,wetrytofindtheapproachusedbytheFastPasssystemofDisneylandfromtheinformationontheInternet,butlater,webelieveitismorelikelytobeacommercialsecret.Fortunately,fromthewordofmouthofmanytouristsandunofficialguidetoDisneyland,wecanstillgettoknowtheapproximaterulesofdeterminingthereturntimeinaQPsystem.ThebiggestvariableinthesystemthatwillaffectthereturntimeofatouristishowlongtheregularlinefortheattractionisatthetimehegetstheQP.Therefore,weestimatethereturntimeoftheithtouristaccordingtothefollowingsimplefunction:whereTiisthereturntime,riisthearrivetime,Ciisthecapacityoftheattraction,qiisthecurrentlengthoftheregularline,andεisamodifiedfactorspecifiedbythesystemcontroller.Forconvenience,inthisbasicmodelwesetthereturntimewindowWiequaltoanhour,whichisthetimewindowusedbyDisneyland.Weusethisvaluefortheconvenienceofthetourists.AnalysisofScheme1Thisschemefordeterminingreturntimeisverysimpleandeasytoimplement.Andusingscheme1willencouragepeopletogetQPticketssincethereturntimeisshortandQPholderscanalsoenjoythebenefitsofgettingtheservicebeforesomenon-QPtouristswhoarrivedearlier.Butbasedonthisscheme,thefreetimeincrementofQPholdersissmallandontheotherhand,thoseintheregularlinemayhavetowaitforevenmoretimebeforetheimplementationofQPrules.Thisresultisagainstouroriginalobjective.Moreover,sincethiskindofQPsystemisnotFIFO,itwillcauseaseriousproblemwehavepreviouslydiscussed:Thereturntimemaybecomeunstable.Thereasonisthatweonlyconsiderthelengthoftheregularlineandthusthesuddenchangeofthisline(say,alargegroupoftouristsarriveattheattractionduringaveryshortperiodoftime)willcausetheaboveproblem.Fig1Boththeregularlineandvirtuallineincreaseasthereturntimegoesup.Theappearanceofthepeakisbecausethatwehavenottakenintoaccountofthevirtualline.Thereforelaterwewillconsiderthelengthofvirtualline.4.2.2Scheme2Scheme1isaverysimpleapproach.NowweaddinconsiderationthenumberofpeopleintheQPvirtualline.InthiswaythesystembecomesFIFOandthuscanavoidtheprobleminscheme1.Tobeconcrete,wereservethepositionofaQPholderinthelineandallowthetouristtodoanythinghewantsduringhisoriginalwaitingtime.Therefore,weestimatethereturntimeoftheithtouristaccordingtothefollowingsimplefunction:whereTi,ri,Ci,qi,andεhavethesamemeaningasthoseinscheme1,andviisthecurrentlengthoftheQPvirtualline.AnalysisofScheme2AfterconsideringtheQPvirtualline,scheme2solvesthemainproblemofscheme1.Moreover,itfurtherincreasesthetotalfreetime,sinceaccordingtoFIFO,thewaitingtimeforpeopleintheregularlineremainsthesameastheircounterpartsinhistoryandthushasnotbeenstretchedbecauseofQPrules.4.2.3Scheme3AgoodQPstrategyshouldnotonlyincreasethefreetimebutalsomakethelengthofthewaitinglineinanappropriaterange.Therefore,wehopethattheQPholderswillreturntotheattractionduringthe“valley”ofthetourists’arrival.Toachievethis,wenowtakeintoaccountthefluxoftouristsofanattractionshowedinhistoryandassumethatthesituationoftourists’arrivalduringthedayunderdiscussionfollowsthesamepatternasthehistoricaldata.Foraspecificattraction,weneedfourtypesofbasichistoricaldatawhenformulatingourscheme.thenumberoftouristsanattractioncanserveinatimeunittheaveragenumberoftouristsarrivingattheattractionduringeveryperiodoftimeofanordinarydaythelengthoftheregularlinewhenatouristarrivesattheattractionthelengthoftheQPvirtuallinewhenatouristarrivesattheattractionBasedonthefourtypesofdataabove,wewillformulatearuletodeterminethereturntime(denotedbyTi)oftheithtourist.Ourruleisbasedonthefollowingcriteria:tomovethepositionoftheQPtouristbackwardsinordertoavoidthe“peaktime”manifestedinthehistoricaldataandfillhispositioninthe“valley”ofthedatagraph.Inthisway,wetrytomaintainthenumberofthetourists’arrivalinastablelevel.Wefirstfigureoutthelengthofwaitinglineduringeveryperiodoftimeinadayusingthenumberoftouristsarrivedattheattraction,includingthenumberoftouristswhorequestedaQPticket,andthecapacityoftheattraction.ThelengthofwaitinglineisdenotedbyA.Itcanbeaminusvalue,whichmeansthattheattractionisnotinuseatthattime.Nowwedescribetheconcreteprocedurestosearchforthereturntime.ForaQPtourist,thereisalowerboundforhisreturntime.WesetthislowerboundbethereturntimederivedfromScheme2.Thislowerboundtimeisthestarttimepointofoursearchingalgorithm.SearchbackwardsandfindthefirsttimepointthatAisaminusvalue.Theattractionhasalowworkloadatthistimepoint.Therefore,weassignthistimepointasthereturntime.Consideringthetourists’interests,wealsointroduceanupperboundofthereturntime.Oursearchingprocesswillstopifitreachestheupperboundandwillreturnthisvalue.Fig2TheredcurverepresentsthedataofanattractionwithoutaFPsystem,whiletheblueonerepresentsthedataofthesameattractionwithaFPsystemBycomparingtwocurves,wecanobservethattheFPsystemassigntheQPholdersalaterreturntimethatavoidthepeaktimeoftourists’arrival.4.2.4Scheme4InScheme4,wesetthereturntimeofQPholderstoavoidthepeaktimeoftourists’arrival(itisalsothetimethattheregularlineisverycongested).However,thisstrategycannotstaggerthereturntimeofQPholders.ItmeansthattheremayalsoexistpeaktimeforQPholderstoreturn,sothatthoseQPtouristsmaystillhavetowaitinaquitelongQPline.Therefore,inScheme4,wewanttoformulateaQPrulewhichcanavoidsuchsituation.Inotherwords,wehopethatthelengthofQPlinecanalsobecontrolledinashortandstablelevel.Inordertoachievethisgoal,wemustrecordthereturntimeofeachQPholderofthisattractioninourprogramsothatwecanadjustthelengthofQPvirtualline.WehopethattheintroducingofQPsystemwilllimitthewaitingtimeforareturningQPholderwithinfiveminutes,whichisthestandardexpectedvalueusedbyDisneyland.Therefore,wesettheupperboundoftheQPlineequaltothenumberoftouriststheattractioncanserveinfiveminutes.Thefollowingistheconcretesearchingprocedure.First,wefindthereturntimepointderivedfromScheme3(denotedasRt).Then,basedontherecordedreturntimeofeachQPholderinthesystem,wefigureoutthelengthoftheQPlinewhenthisQPholderreturnstotheattractionatthetimepointRt.IfthelengthoftheQPlineatRtexceedstheupperboundwesetabove,wefurthermovethereturntimepointbackwardsforfiveminutes.ThisstrategywillguaranteethattheQPholders’waitingtimeisnomorethanfiveminutes.TheeffectofScheme4isshowedinthefollowingfigure.Fig3Theeffectivenessofscheme4ontheadjustmentoftheQPlineTheblueonerepresentsthedatebeforetheimplementationofScheme4andtheredonerepresentsthedatebeforetheimplementationofScheme44.2.5Scheme5InScheme5,westillfocusonthemaximizationofthefreetimeofalltourists.Butwewilluseanewapproachtoformulateourscheme.Beforedescribingtheconcreterules,wewanttofurtheranalyzethemechanismofstretchingthefreetimeinaQPsystem.Forthesakeofconvenience,wedonottakeintoaccountthelengthofthereturntimewindowandsimplyassumethereturntimeasadesignatedtimepoint.InScheme2,theQPsystemmaintainsthepositioninthelineforaQPholder.Whenthetimefor“serving”thispositioncomes,theQPholderreturnstoaccepttheservice.Therefore,afterintroducingScheme2,theonlyincreasedfreetimederivesfromtheoriginalwaitingtimeoftheQPholder.Asforthetouristsintheregularline,theirfreetimehasneitherincreasednordecreased,comparedtothesituationbeforeintroducingQPrules.Actually,thisisaninterestinghiddenfact.Manynon-QPtouristscomplainthattheirwaitingtimeislengthenedbecauseofthecontinuousarrivalofreturningQPholders.ButifthesystemfollowstheFIFOpatternasinScheme2,theysimplywaitthesamelongtimeastheircounterpartsinthehistorydid!Inaword,Scheme2bringsnobenefittothetouristsintheregularline.TheonlygroupofpeoplewhoobtainmorefreetimeareQPholders.Seethefollowingfigure.QPholderonlyreservestheposition.QPholderonlyreservestheposition.Fig4SinceScheme1maystretchthewaitingtimeoftouristsintheregularline,thefreetimeincrementofScheme1isevensmallerthanthatofScheme2.ButinmostofthetimeScheme1canstillincreasethetotalfreetimeoftourists.InScheme3,wemovethepositionofaQPholderbackwardssothatsometouristsarrivinglatercanenjoythebenefitsofgettingtheserviceearlier.Ontheotherhand,theQPholderssacrificetheircurrentpositioninthelinetogetmorefreetimeforotheractivitiesinreturn.Thisstrategycanfurtherimprovetheaveragefreetimeoftouristsinthepark.Theeffectisillustratedinthefollowingfigure.QPholdersQPholderssacrificetheircurrentposition. Fig5Sincetheregular-linetouristswhoarebetweenthetwoarrowscangettheservicebeforetheearlierarrivingQPholders,thetotalfreetimenowisnt+Rt,wherenisthenumberofregular-linetouristsinthedashedframe,tistheaverageservicetimeforeachtouristandRtisthereturntimeoftheQPholder.Fromtheaboveanalysis,wecanseethatdifferentQPrulescanbringdifferentfreetimeincrement.Butinmostofthesituations,theintroducingofQPruleswilldefinitelyincreasethefreetimeofthesystem.Therefore,inordertomaximizethetotalfreetimeofasystem,itseemsthatthenumberofQPholdersshouldbeaslargeaspossibleandthereturntimeofQPholdersshouldbeassignedaslongaspossible.However,itisnotthecase.First,weconsiderthelimitsituation.IfallthetouristsholdQPticketsandreturntotheattractionatthedesignatedtime,thelineinfrontoftheattractionwillnearlydisappear.ItisagainstthepreviousdiscussedhopeofCEO—tomaintainawaitinglinewithappropriatelength.Therefore,thesystemshouldsetalimittothenumberofQPticketsavailable.Second,wewouldliketotakeintoaccountthepsychologicalfactorofthetouristsandmakethefollowingassumption.Westillusethelowerboundofreturntimespecifiedinscheme3andassumethattheprobabilityoftouriststorequestaQPtickethasthehighestvaluecorrespondingtothisreturntime.Withtheincreasingofthereturntimemanifestedontheboardoftheattraction,fewerandfewerpeoplearewillingtogetaQPticket.(Sincetheyhavetoidletoomuchtimebeforeplayinginthisattraction,itwillsuretocausetheirinconvenienceanddissatisfactionthatleadtotheabandonmentoftheideatogetaQPticketatthattime.)Weusethesimplecurvetodescribethisassumption:Fig6TheprobabilityoftouriststorequestaQPtickethasthehighestvaluecorrespondingtothisreturntime.Withtheincreasingofthereturntimemanifestedontheboardoftheattraction,fewerandfewerpeoplearewillingtogetaQPticket.ThenwemultiplythenumberofthepeoplewhoarewillingtogetaQPticketbythecorrespondingreturntime,yieldinganewcurveasfollows:Fig7ItshowsthetendencyofthechangesinfreetimeofQPholderswithrespondtothechangesinreturntime.Thereexistsapeakvalueofthefreetime.Further,weaddthefreetimeincrementofregular-linetourists(asshowedbytheredlineinthefollowinggraph).Fig8Thegreenlineshowsthetotalfreetimeincrement.Wecanseethatwiththeincreasingofthereturntime,thetotalfreetimeofth
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《第一單元 算法與程序設(shè)計初體驗 1 小貓漫步》教學設(shè)計-2023-2024學年南方版(湖南)(2019)信息技術(shù)六年級下冊
- 2025年無線接入網(wǎng)用的手機合作協(xié)議書
- 22 陳涉世家2024-2025學年九年級下冊語文同步教案(統(tǒng)編版)標簽標題
- 第6單元《100以內(nèi)的加法和減法(一)》單元備課方案
- 14《荷塘月色》《我與地壇》群文閱讀教學設(shè)計2024-2025學年統(tǒng)編版高中語文必修上冊
- 2025年河南對外經(jīng)濟貿(mào)易職業(yè)學院單招職業(yè)適應(yīng)性測試題庫及答案1套
- 江蘇省揚州市寶應(yīng)縣2023-2024學年高二上學期期中考試地理試題(解析版)
- 第三單元數(shù)據(jù)表處理第9課一、建立表格教學設(shè)計 2023-2024學年人教版初中信息技術(shù)七年級上冊
- 2025年廣州民航職業(yè)技術(shù)學院單招職業(yè)適應(yīng)性測試題庫及答案1套
- 太陽能熱電聯(lián)產(chǎn)項目可行性研究的目的和意義
- 電力公司備品備件管理制度
- 現(xiàn)金流量表編制案例
- 部編版二年級道德與法治下冊《學習有方法》教案及教學反思
- 八年級英語閱讀理解每日一練
- Q2起重機司機模擬考試100題(精選)
- 臨時設(shè)備和臨時用工計劃表
- 準社會交往研究綜述論文
- 中華老字號課件
- EPC工程總承包竣工驗收管理方案
- 發(fā)動機正時類寶馬m54圖
- 全身體格檢查總結(jié)及評分標準
評論
0/150
提交評論