版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
陜西省西安市高新第一中學(xué)2024屆數(shù)學(xué)高一上期末經(jīng)典模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),把函數(shù)的圖像向右平移個單位,得到函數(shù)的圖像,若是在內(nèi)的兩根,則的值為()A. B.C. D.2.下列等式中,正確的是()A. B.C. D.3.關(guān)于函數(shù)下列敘述有誤的是A.其圖象關(guān)于直線對稱B.其圖像可由圖象上所有點橫坐標(biāo)變?yōu)樵瓉淼谋兜玫紺.其圖像關(guān)于點對稱D.其值域為4.直線經(jīng)過第一、二、四象限,則a、b、c應(yīng)滿足()A. B.C. D.5.《擲鐵餅者》取材于希臘的現(xiàn)實生活中的體育競技活動,刻畫的是一名強健的男子在擲鐵餅過程中最具有表現(xiàn)力的瞬間.現(xiàn)在把擲鐵餅者張開的雙臂近似看成一張拉滿弦的“弓”,擲鐵餅者的手臂長約為米,肩寬約為米,“弓”所在圓的半徑約為1.25米,則擲鐵餅者雙手之間的距離約為()A.1.012米 B.1.768米C.2.043米 D.2.945米6.如圖,在等腰梯形中,,分別是底邊的中點,把四邊形沿直線折起使得平面平面.若動點平面,設(shè)與平面所成的角分別為(均不為0).若,則動點的軌跡圍成的圖形的面積為A. B.C. D.7.已知一元二次方程的兩個不等實根都在區(qū)間內(nèi),則實數(shù)的取值范圍是()A. B.C. D.8.點A,B,C,D在同一個球的球面上,,,若四面體ABCD體積的最大值為,則這個球的表面積為A. B.C. D.9.已知函數(shù)在上是增函數(shù),則的取值范圍是()A. B.C. D.10.已知中,,,點M是線段BC(含端點)上的一點,且,則的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)是R上的減函數(shù),則實數(shù)a的取值范圍為_______12.用二分法研究函數(shù)f(x)=x3+3x-1的零點時,第一次經(jīng)計算,可得其中一個零點x0∈(0,1),那么經(jīng)過下一次計算可得x0∈___________(填區(qū)間).13.已知指數(shù)函數(shù)(且)在區(qū)間上的最大值是最小值的2倍,則______14.已知直線平行,則實數(shù)的值為____________15.銳角中,分別為內(nèi)角的對邊,已知,,,則的面積為__________16.將函數(shù)的圖象向右平移個單位,再將圖象上每一點的橫坐標(biāo)縮短到原來的倍,得到函數(shù)的圖象,則函數(shù)的解析式為____________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求函數(shù)的周期和單調(diào)遞減區(qū)間;(2)將的圖象向右平移個單位,得到的圖象,已知,,求值.18.直線過定點,交、正半軸于、兩點,其中為坐標(biāo)原點.(Ⅰ)當(dāng)?shù)膬A斜角為時,斜邊的中點為,求;(Ⅱ)記直線在、軸上的截距分別為,其中,求的最小值.19.在下列三個條件中任選一個,補充在下面的問題中,并作答①的最小正周期為,且是偶函數(shù):②圖象上相鄰兩個最高點之間的距離為,且;③直線與直線是圖象上相鄰的兩條對稱軸,且問題:已知函數(shù),若(1)求,的值;(請先在答題卡上寫出所選序號再做答)(2)將函數(shù)的圖象向右平移個單位長度后,再將得到的函數(shù)圖象上所有點的橫坐標(biāo)伸長為原來的4倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求在上的最小值和最大值20.如果函數(shù)滿足:對定義域內(nèi)的所有,存在常數(shù),,都有,那么稱是“中心對稱函數(shù)”,對稱中心是點.(1)證明點是函數(shù)的對稱中心;(2)已知函數(shù)(且,)的對稱中心是點.①求實數(shù)的值;②若存在,使得在上的值域為,求實數(shù)的取值范圍.21.已知函數(shù)是定義在R上的偶函數(shù),當(dāng)時,(1)畫出函數(shù)的圖象;(2)根據(jù)圖象寫出的單調(diào)區(qū)間,并寫出函數(shù)的值域.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】把函數(shù)圖象向右平移個單位,得到函數(shù),化簡得且周期為,因為是在內(nèi)的兩根,所以必有,根據(jù)得,令,則,,所以,故選A.2、D【解析】按照指數(shù)對數(shù)的運算性質(zhì)依次判斷4個選項即可.【詳解】對于A,當(dāng)為奇數(shù)時,,當(dāng)為偶數(shù)時,,錯誤;對于B,,錯誤;對于C,,錯誤;對于D,,正確.故選:D.3、C【解析】由已知,該函數(shù)關(guān)于點對稱.故選C.4、A【解析】根據(jù)直線經(jīng)過第一、二、四象限判斷出即可得到結(jié)論.【詳解】由題意可知直線的斜率存在,方程可變形為,∵直線經(jīng)過第一、二、四象限,∴,∴且故選:A.5、B【解析】由題分析出這段弓所在弧長,結(jié)合弧長公式求出其所對圓心角,雙手之間的距離為其所對弦長【詳解】解:由題得:弓所在的弧長為:;所以其所對的圓心角;兩手之間的距離故選:B6、D【解析】由題意,PE=BEcotθ1,PF=CFcotθ2,∵BE=CF,θ1=θ2,∴PE=PF以EF所在直線為x軸,EF的垂直平分線為y軸建立坐標(biāo)系,設(shè)E(﹣,0),F(xiàn)(,0),P(x,y),則(x+)2+y2=[(x﹣)2+y2],∴3x2+3y2+5ax+a2=0,即(x+a)2+y2=a2,軌跡為圓,面積為故答案選:D點睛:這個題考查的是立體幾何中點的軌跡問題,在求動點軌跡問題中常用的方法有:建立坐標(biāo)系,將立體問題平面化,用方程的形式體現(xiàn)軌跡;或者根據(jù)幾何意義得到軌跡,但是注意得到軌跡后,一些特殊點是否需要去掉7、D【解析】設(shè),根據(jù)二次函數(shù)零點分布可得出關(guān)于實數(shù)的不等式組,由此可解得實數(shù)的取值范圍.【詳解】設(shè),則二次函數(shù)的兩個零點都在區(qū)間內(nèi),由題意,解得.因此,實數(shù)的取值范圍是.故選:D.8、D【解析】根據(jù)題意,畫出示意圖,結(jié)合三角形面積及四面積體積的最值,判斷頂點D的位置;然后利用勾股定理及球中的線段關(guān)系即可求得球的半徑,進(jìn)而求得球的面積【詳解】根據(jù)題意,畫出示意圖如下圖所示因為,所以三角形ABC為直角三角形,面積為,其所在圓面的小圓圓心在斜邊AC的中點處,設(shè)該小圓的圓心為Q因為三角形ABC的面積是定值,所以當(dāng)四面體ABCD體積取得最大值時,高取得最大值即當(dāng)DQ⊥平面ABC時體積最大所以所以設(shè)球心為O,球的半徑為R,則即解方程得所以球的表面積為所以選D【點睛】本題考查了空間幾何體的外接球面積的求法,主要根據(jù)題意,正確畫出圖形并判斷點的位置,屬于難題9、C【解析】若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),則x2﹣ax+3a>0且f(2)>0,根據(jù)二次函數(shù)的單調(diào)性,我們可得到關(guān)于a的不等式,解不等式即可得到a的取值范圍【詳解】若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),則當(dāng)x∈[2,+∞)時,x2﹣ax+3a>0且函數(shù)f(x)=x2﹣ax+3a為增函數(shù)即,f(2)=4+a>0解得﹣4<a≤4故選C【點睛】本題考查的知識點是復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),對數(shù)函數(shù)的單調(diào)區(qū)間,其中根據(jù)復(fù)合函數(shù)的單調(diào)性,構(gòu)造關(guān)于a的不等式,是解答本題的關(guān)鍵10、D【解析】如圖所示,建立直角坐標(biāo)系,則,,,.利用向量的坐標(biāo)運算可得.再利用數(shù)量積運算,可得.利用數(shù)量積性質(zhì)可得,可得.再利用,,可得,即可得出【詳解】如圖所示,建立直角坐標(biāo)系則,,,,,及四邊形為矩形,,,.即點在直線上,,,,,,即(當(dāng)且僅當(dāng)或時取等號),綜上可得:故選:【點睛】本題考查了向量的坐標(biāo)運算、數(shù)量積運算及其性質(zhì)、不等式的性質(zhì)等基礎(chǔ)知識與基本技能方法,考查了推理能力和計算能力,屬于難題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由已知結(jié)合分段函數(shù)的性質(zhì)及一次函數(shù)的性質(zhì),列出關(guān)于a的不等式,解不等式組即可得解.【詳解】因為函數(shù)是R上的減函數(shù)所以需滿足,解得,即所以實數(shù)a的取值范圍為故答案為:12、【解析】根據(jù)零點存在性定理判斷零點所在區(qū)間.【詳解】,,所以下一次計算可得.故答案為:13、或2【解析】先討論范圍確定的單調(diào)性,再分別進(jìn)行求解.【詳解】①當(dāng)時,,得;②當(dāng)時,,得,故或2故答案為:或2.14、【解析】對x,y的系數(shù)分類討論,利用兩條直線平行的充要條件即可判斷出【詳解】當(dāng)m=﹣3時,兩條直線分別化為:2y=7,x+y=4,此時兩條直線不平行;當(dāng)m=﹣5時,兩條直線分別化為:x﹣2y=10,x=4,此時兩條直線不平行;當(dāng)m≠﹣3,﹣5時,兩條直線分別化為:y=x+,y=+,∵兩條直線平行,∴,≠,解得m=﹣7綜上可得:m=﹣7故答案為﹣7【點睛】本題考查了分類討論、兩條直線平行的充要條件,屬于基礎(chǔ)題15、【解析】由已知條件可得,,再由正弦定理可得,從而根據(jù)三角形內(nèi)角和定理即可求得,從而利用公式即可得到答案.【詳解】,由得,又為銳角三角形,,又,即,解得,.由正弦定理可得,解得,又,,故答案為.【點睛】三角形面積公式的應(yīng)用原則:(1)對于面積公式S=absinC=acsinB=bcsinA,一般是已知哪一個角就使用哪一個公式(2)與面積有關(guān)的問題,一般要用到正弦定理或余弦定理進(jìn)行邊和角的轉(zhuǎn)化16、【解析】利用函數(shù)的圖象變換規(guī)律,即可得到的解析式【詳解】函數(shù)的圖象向右平移個單位,可得到,再將圖象上每一點的橫坐標(biāo)縮短到原來的倍,可得到.故.【點睛】本題考查了三角函數(shù)圖象的平移變換,屬于基礎(chǔ)題三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】(1)首先利用二倍角公式及輔助角公式將函數(shù)化簡,再根據(jù)正弦函數(shù)的性質(zhì)計算可得;(2)首先根據(jù)三角函數(shù)的平移變換規(guī)則求出的解析式,根據(jù),得到,再根據(jù)同角三角函數(shù)的基本關(guān)系求出,最后根據(jù)兩角和的余弦公式計算可得;【小問1詳解】解:∵,即,所以函數(shù)的最小正周期,令,解得.故函數(shù)的單調(diào)遞減區(qū)間為.【小問2詳解】解:由題意可得,∵,∴,∵,所以,則,因此.18、(Ⅰ);(Ⅱ)9.【解析】(Ⅰ)首先求得直線方程與坐標(biāo)軸的交點,然后求解的值即可;(Ⅱ)由題意結(jié)合截距式方程和均值不等式的結(jié)論求解的最小值即可.【詳解】(Ⅰ),令令,.(Ⅱ)設(shè),則,,當(dāng)時,的最小值.【點睛】在應(yīng)用基本不等式求最值時,要把握不等式成立的三個條件,就是“一正——各項均為正;二定——積或和為定值;三相等——等號能否取得”,若忽略了某個條件,就會出現(xiàn)錯誤19、(1),(2)最小值為1,最大值為2【解析】(1)根據(jù)①②③所給的條件,以及正余弦函數(shù)的對稱性和周期性之間的關(guān)系即可求解;(2)根據(jù)函數(shù)的伸縮平移變換后的特點寫出的解析式即可.【小問1詳解】選條件①:∵的最小正周期為,∴,∴;又是偶函數(shù),∴對恒成立,得對恒成立,∴,∴(),又,∴;選條件②:∵函數(shù)圖象上相鄰兩個最高點之間的距離為,∴,;又,∴,即,∴(),又,∴;選條件③:∵直線與直線是圖象上相鄰的兩條對稱軸,∴,即.∴;又,∴,∴(),又,∴;【小問2詳解】由(1)無論選擇①②③均有,,即,將圖象向右平移個單位長度后,得到的圖象,將的圖象上所有點的橫坐標(biāo)伸長為原來的4倍,縱坐標(biāo)不變,得到的圖象,∵,∴∴在上單調(diào)遞增;在上單調(diào)遞減又∵,,∴在的最小值為1,最大值為2;綜上:,最小值=1,最大值=2.20、(1)見解析;(2)①,②.【解析】(1)求得,根據(jù)函數(shù)的定義,即可得到函數(shù)的圖象關(guān)于點對稱.(2)①根據(jù)函數(shù)函數(shù)的定義,利用,即可求得.②由在上的值域,得到方程組,轉(zhuǎn)化為為方程的兩個根,結(jié)合二次函數(shù)的性質(zhì),即可求解.【詳解】(1)由題意,函數(shù),可得,所以函數(shù)的圖象關(guān)于點對稱.(2)①因為函數(shù)(且,)對稱中心是點,可得,即,解得(舍).②因為,∴,可得,又因為,∴.所以在上單調(diào)遞減,由在上的值域為所以,,即,即,即為方程的兩個根,且,令,則滿足,解得,所以實數(shù)的取值范圍.【點睛】本題主要考查了函數(shù)的新定義,函數(shù)的基本性質(zhì)的應(yīng)用,以及二次函數(shù)的圖象與性質(zhì)的綜合應(yīng)用,其中解答中正確理解函數(shù)的新定義,合理利用函數(shù)的性質(zhì),以及二次函數(shù)的圖象與性質(zhì)求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴州城市職業(yè)學(xué)院《數(shù)字圖像處理及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴陽職業(yè)技術(shù)學(xué)院《中學(xué)英語教學(xué)研究方法》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025廣東省安全員《B證》考試題庫
- 2025年重慶市安全員-A證考試題庫附答案
- 廣州珠江職業(yè)技術(shù)學(xué)院《惡意代碼調(diào)查技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年江西省安全員B證(項目經(jīng)理)考試題庫
- 廣州應(yīng)用科技學(xué)院《手機多媒體開發(fā)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025青海建筑安全員A證考試題庫
- 廣州衛(wèi)生職業(yè)技術(shù)學(xué)院《多媒體信息處理與傳輸》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州鐵路職業(yè)技術(shù)學(xué)院《動畫設(shè)計原理》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025社保政策培訓(xùn)
- 2025年中小學(xué)春節(jié)安全教育主題班會課件
- 2024年單位司機個人工作總結(jié)(6篇)
- 【9物(北師)期末】阜陽市臨泉縣2023-2024學(xué)年九年級上學(xué)期期末考試物理試題
- 眼鏡銷售儀容儀表培訓(xùn)
- “兩高”發(fā)布《關(guān)于辦理拒不執(zhí)行判決、裁定刑事案件適用法律若干問題的解釋》(新舊對照表)
- 醫(yī)生或醫(yī)技崗位招聘面試題與參考回答(某大型國企)2024年
- 2024國考:公司座談提綱2024
- 2024年掃地機器人市場動態(tài)及行業(yè)發(fā)展分析
- 藝術(shù)學(xué)概論學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 2024年區(qū)域牛羊肉獨家代理銷售協(xié)議
評論
0/150
提交評論