上海黃浦區(qū)2024屆高一數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第1頁
上海黃浦區(qū)2024屆高一數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第2頁
上海黃浦區(qū)2024屆高一數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第3頁
上海黃浦區(qū)2024屆高一數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第4頁
上海黃浦區(qū)2024屆高一數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

上海黃浦區(qū)2024屆高一數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.已知關(guān)于x的不等式解集為,則下列說法錯誤的是()A.B.不等式的解集為C.D.不等式的解集為2.函數(shù),設(shè),則有A. B.C. D.3.已知三個變量隨變量變化數(shù)據(jù)如下表:則反映隨變化情況擬合較好的一組函數(shù)模型是A. B.C. D.4.在正方體ABCD-A1B1C1D1中,異面直線AD1和B1C所成的角是()A. B.C. D.5.已知關(guān)于的方程在區(qū)間上存在兩個不同的實數(shù)根,則實數(shù)的取值范圍是()A. B.C. D.6.已知定義在R上的函數(shù)的圖象是連續(xù)不斷的,且有如下對應(yīng)值表:x123453那么函數(shù)一定存在零點的區(qū)間是()A. B.C. D.7.若偶函數(shù)在上單調(diào)遞減,且,則不等式的解集是()A. B.C. D.8.設(shè),且,則等于()A.100 B.C. D.9.已知角的終邊與單位圓相交于點,則=()A. B.C. D.10.圓過點的切線方程是()A. B.C. D.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11.已知函數(shù),若,則________.12.已知直線與直線的傾斜角分別為和,則直線與的交點坐標(biāo)為__________13.函數(shù)y=的定義域是______.14.函數(shù)的定義域為______15.設(shè)A為圓上一動點,則A到直線的最大距離為________三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16.設(shè)全集U=R,集合,(1)當(dāng)時,求;(2)若A∩B=A,求實數(shù)a的取值范圍17.已知函數(shù)(I)求函數(shù)圖象的對稱軸方程;(II)求函數(shù)的最小正周期和值域.18.已知角的頂點與原點重合,始邊與軸的非負(fù)半軸重合,它的終邊在直線上.(1)求的值;(2)求值19.已知函數(shù)是定義在區(qū)間上的奇函數(shù),且.(1)求函數(shù)的解析式;(2)判斷函數(shù)在區(qū)間上的單調(diào)性,并用函數(shù)單調(diào)性的定義證明.20.已知函數(shù)在一個周期內(nèi)的圖像經(jīng)過點和點,且的圖像有一條對稱軸為.(1)求的解析式及最小正周期;(2)求的單調(diào)遞增區(qū)間.21.若關(guān)于x的不等式的解集為(1)當(dāng)時,求的值;(2)若,求的值及的最小值

參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、D【解析】根據(jù)已知條件得和是方程的兩個實根,且,根據(jù)韋達(dá)定理可得,根據(jù)且,對四個選項逐個求解或判斷可得解.【詳解】由已知可得-2,3是方程的兩根,則由根與系數(shù)的關(guān)系可得且,解得,所以A正確;對于B,化簡為,解得,B正確;對于C,,C正確;對于D,化簡為:,解得,D錯誤故選:D.2、D【解析】>1,<0,0<<1,∴b<c<1,又在x∈(-∞,1)上是減函數(shù),∴f(c)<f(b)<0,而f(a)>0,∴f(c)<f(b)<f(a).點睛:在比較冪和對數(shù)值的大小時,一般化為同底數(shù)的冪(利用指數(shù)函數(shù)性質(zhì))或同底數(shù)對數(shù)(利用對數(shù)函數(shù)性質(zhì)),有時也可能化為同指數(shù)的冪(利用冪函數(shù)性質(zhì))比較大小,在不能這樣轉(zhuǎn)化時,可借助于中間值比較,如0或1等.把它們與中間值比較后可得出它們的大小3、B【解析】根據(jù)冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)增長速度的不同可得結(jié)果.【詳解】從題表格可以看出,三個變量都是越來越大,但是增長速度不同,其中變量的增長速度最快,呈指數(shù)函數(shù)變化,變量的增長速度最慢,對數(shù)型函數(shù)變化,故選B【點睛】本題主要考查冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)模型的應(yīng)用,意在考查綜合利用所學(xué)知識解決問題的能力,屬于簡單題.4、D【解析】正方體ABCD-A1B1C1D1的面對角線AD1和面對角線DA1所成的角就是異面直線AD1和B1C所成的角,利用正方體的性質(zhì)即得【詳解】由正方體的性質(zhì)可知,,∴四邊形為平行四邊形,∴DA1∥B1C,∴正方體ABCD-A1B1C1D1的面對角線AD1和面對角線DA1所成的角就是異面直線AD1和B1C所成的角,∵四邊形ADD1A1正方形,∴直線AD1和DA1垂直,∴異面直線AD1和B1C所成的角是90°故選:D5、C【解析】本題首先可根據(jù)方程存在兩個不同的實數(shù)根得出、,然后設(shè),分為、兩種情況進(jìn)行討論,最后根據(jù)對稱軸的相關(guān)性質(zhì)以及的大小即可得出結(jié)果.【詳解】因為方程存在兩個不同的實數(shù)根,所以,,解得或,設(shè),對稱軸為,當(dāng)時,因為兩個不同實數(shù)根在區(qū)間上,所以,即,解得,當(dāng)時,因為兩個不同的實數(shù)根在區(qū)間上,所以,即,解得,綜上所述,實數(shù)的取值范圍是,故選:C.6、B【解析】利用零點存在性定理判斷即可.【詳解】則函數(shù)一定存在零點的區(qū)間是故選:B【點睛】本題主要考查了利用零點存在性定理判斷零點所在區(qū)間,屬于基礎(chǔ)題.7、A【解析】根據(jù)奇偶性,可得在上單調(diào)遞增,且,根據(jù)的奇偶性及單調(diào)性,可得,根據(jù)一元二次不等式的解法,即可得答案.【詳解】由題意得在上單調(diào)遞增,且,因為,所以,解得,所以不等式的解集是.故選:A8、C【解析】由,得到,再由求解.【詳解】因為,所以,則,所以,則,解得,故選:C9、C【解析】先利用三角函數(shù)的定義求角的正、余弦,再利用二倍角公式計算即可.【詳解】角的終邊與單位圓相交于點,故,所以,故.故選:C.10、D【解析】先求圓心與切點連線的斜率,再利用切線與連線垂直求得切線的斜率結(jié)合點斜式即可求方程.【詳解】由題意知,圓:,圓心在圓上,,所以切線的斜率為,所以在點處的切線方程為,即.故選:D.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11、【解析】根據(jù)題意,將分段函數(shù)分類討論計算可得答案【詳解】解:當(dāng)時,,即,解得,滿足題意;當(dāng)時,,即,解得,不滿足題意故.故答案為.【點睛】本題考查分段函數(shù)的計算,屬于基礎(chǔ)題12、【解析】因為直線與直線的傾斜角分別為和,所以,聯(lián)立與可得,,直線與的交點坐標(biāo)為,故答案為.13、【解析】要使函數(shù)有意義,需滿足,函數(shù)定義域為考點:函數(shù)定義域14、【解析】由對數(shù)的真數(shù)大于零、二次根式的被開方數(shù)非負(fù),分式的分母不為零,列不等式組可求得答案【詳解】由題意得,解得,所以函數(shù)的定義域為,故答案為:15、【解析】求出圓心到直線的距離,進(jìn)而可得結(jié)果.【詳解】依題意可知圓心為,半徑為1.則圓心到直線距離,則點直線的最大距離為.故答案:.三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16、(1)或(2)【解析】(1)化簡集合B,根據(jù)補(bǔ)集、并集的運算求解;(2)由條件轉(zhuǎn)化為A?B,分類討論,建立不等式或不等式組求解即可.【小問1詳解】當(dāng)時,,,或,或【小問2詳解】由A∩B=A,得A?B,當(dāng)A=?時,則3a>a+2,解得a>1,當(dāng)A≠?時,則,解得,綜上,實數(shù)a的取值范圍是17、(I)(II)周期為,值域為【解析】(I)化簡得,進(jìn)而可求解(II)化簡,進(jìn)而可求解【詳解】(I)因為,,所以,由得,對稱軸為(II)因為,所以,,周期為,值域為【點睛】方法點睛:需要利用三角公式“化一”,進(jìn)一步研究正弦型函數(shù)的圖象和性質(zhì),達(dá)到解題目的18、(1)或;(2)或;【解析】(1)在直線上任取一點,由已知角的終邊過點,利用誘導(dǎo)公式與三角函數(shù)定義即可求解,要注意分類討論m的正負(fù).(2)先利用商的關(guān)系化簡原式為,結(jié)合第一問利用三角函數(shù)定義分別求得與,要注意分類討論m的正負(fù).【詳解】(1)在直線上任取一點,由已知角的終邊過點,,,利用誘導(dǎo)公式與三角函數(shù)定義可得:,當(dāng)時,;當(dāng)時,(2)原式同理(1)利用三角函數(shù)定義可得:,當(dāng)時,,,此時原式;當(dāng)時,,,此時原式;【點睛】易錯點睛:本題考查三角函數(shù)化簡求值,解本題時要注意的事項:角的終邊在直線上,但未確定在象限,要分類討論,考查學(xué)生的轉(zhuǎn)化能力與運算解能力,屬于中檔題.19、(1)(2)增函數(shù),證明見解析【解析】(1)又函數(shù)為奇函數(shù)可得,結(jié)合求得,即可得出答案;(2)令,利用作差法判斷的大小,即可得出結(jié)論.【小問1詳解】解:因為函數(shù)是定義在區(qū)間上的奇函數(shù),所以,即,所以,又,所以,所以;【小問2詳解】解:增函數(shù),證明如下:令,則,因為,所以,,所以,即,所以函數(shù)在區(qū)間上遞增.20、(1),;(2).【解析】(1)由函數(shù)圖象經(jīng)過點且f(x)的圖象有一條對稱軸為直線,可得最大值A(chǔ),且能得周期并求得ω,由五點法作圖求出的值,可得函數(shù)的解析式(2)利用正弦函數(shù)的單調(diào)性求得f(x)的單調(diào)遞增區(qū)間【詳解】(1)函數(shù)f(x)=Asin(ωx+)(A>0,ω>0,)在一個周期內(nèi)的圖象經(jīng)過點,,且f(x)的圖象有一條對稱軸為直線,故最大值A(chǔ)=4,且,∴,∴ω=3所以.因為的圖象經(jīng)過點,所以,所以,.因為,所以,所以.(2)因為,所以,,所以,,即的單調(diào)遞增區(qū)間為.【點睛】本題主要考查由函數(shù)y=Asin(ωx+)的性質(zhì)求解析式,通常由函數(shù)的最大值求出A,由周期求出ω,由五點法作圖求出的值,考查了正弦型函數(shù)的單調(diào)性問題,屬于基礎(chǔ)題21、(1);(2);.【解析】(1)根據(jù)一元二次不等式解集的性質(zhì),結(jié)合一元二次方程根與系數(shù)的關(guān)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論