




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
上海市交大附中嘉定2024屆高一上數(shù)學(xué)期末監(jiān)測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.下列函數(shù)中定義域為,且在上單調(diào)遞增的是A. B.C. D.2.已知函數(shù)的最大值與最小值的差為2,則()A.4 B.3C.2 D.3.關(guān)于函數(shù)有下述四個結(jié)論:①是偶函數(shù);②在區(qū)間單調(diào)遞減;③在有個零點;④的最大值為.其中所有正確結(jié)論的編號是()A.①②④ B.②④C.①④ D.①③4.已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,則滿足f(2x-1)<f的x的取值范圍是()A. B.C. D.5.已知某棱錐的三視圖如圖所示,則該棱錐的表面積為A. B.C. D.6.如圖,在中,已知為上一點,且滿足,則實數(shù)的值為A. B.C. D.7.某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應(yīng)點為,圓柱表面上的點在左視圖上的對應(yīng)點為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為A. B.C. D.28.設(shè);,則p是q()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件9.在空間給出下面四個命題(其中、為不同的兩條直線),、為不同的兩個平面)①②③④其中正確的命題個數(shù)有A.1個 B.2個C.3個 D.4個10.若函數(shù)是定義域為的奇函數(shù),且當(dāng)時,,則當(dāng)時,()A. B.C. D.11.某幾何體的三視圖如圖所示,則該幾何體的體積為()A.16 B.15C.18 D.1712.設(shè),則()A. B.aC. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.____.14.一個扇形的中心角為3弧度,其周長為10,則該扇形的面積為__________15.一個圓錐的側(cè)面展開圖是半徑為3,圓心角為的扇形,則該圓錐的體積為________.16.已知一個扇形的面積為,半徑為,則其圓心角為___________.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知函數(shù),()求函數(shù)的單調(diào)區(qū)間;()若函數(shù)在上有兩個零點,求實數(shù)的取值范圍18.已知函數(shù).(1)若不等式對于一切實數(shù)恒成立,求實數(shù)的取值范圍;(2)若,解關(guān)于的不等式.19.已知定義在上的函數(shù)為常數(shù)).(1)求的奇偶性;(2)已知在上有且只有一個零點,求實數(shù)a的值.20.如圖,AB是圓柱OO1的一條母線,BC是底面的一條直徑,D是圓О上一點,且AB=BC=5,CD=3(1)求該圓柱的側(cè)面積;(2)求點B到平面ACD的距離21.已知函數(shù)的圖像如圖所示.(1)求函數(shù)的解析式;(2)當(dāng)時,求函數(shù)的最大值和最小值.22.某校在2013年的自主招生考試成績中隨機抽取40名學(xué)生的筆試成績,按成績共分成五組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100],得到的頻率分布直方圖如圖所示,同時規(guī)定成績在85分以上的學(xué)生為“優(yōu)秀”,成績小于85分的學(xué)生為“良好”,且只有成績?yōu)椤皟?yōu)秀”的學(xué)生才能獲得面試資格(1)求出第4組的頻率,并補全頻率分布直方圖;(2)根據(jù)樣本頻率分布直方圖估計樣本的中位數(shù)與平均數(shù);(3)如果用分層抽樣的方法從“優(yōu)秀”和“良好”的學(xué)生中共選出5人,再從這5人中選2人,那么至少有一人是“優(yōu)秀”的概率是多少?
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、D【解析】先求解選項中各函數(shù)的定義域,再判定各函數(shù)的單調(diào)性,可得選項.【詳解】因為的定義域為,的定義域為,所以排除選項B,C.因為在是減函數(shù),所以排除選項A,故選D.【點睛】本題主要考查函數(shù)的性質(zhì),求解函數(shù)定義域時,熟記常見的類型:分式,偶次根式,對數(shù)式等,單調(diào)性一般結(jié)合初等函數(shù)的單調(diào)性進行判定,側(cè)重考查數(shù)學(xué)抽象的核心素養(yǎng).2、C【解析】根據(jù)解析式可得其單調(diào)性,根據(jù)x的范圍,可求得的最大值和最小值,根據(jù)題意,列出方程,即可求得a值.【詳解】由題意得在上為單調(diào)遞增函數(shù),所以,,所以,解得,又,所以.故選:C3、A【解析】利用偶函數(shù)的定義可判斷出命題①的正誤;去絕對值,利用余弦函數(shù)的單調(diào)性可判斷出命題②的正誤;求出函數(shù)在區(qū)間上的零點個數(shù),并利用偶函數(shù)的性質(zhì)可判斷出命題③的正誤;由取最大值知,然后去絕對值,即可判斷出命題④的正誤.【詳解】對于命題①,函數(shù)的定義域為,且,則函數(shù)為偶函數(shù),命題①為真命題;對于命題②,當(dāng)時,,則,此時,函數(shù)在區(qū)間上單調(diào)遞減,命題②正確;對于命題③,當(dāng)時,,則,當(dāng)時,,則,由偶函數(shù)的性質(zhì)可知,當(dāng)時,,則函數(shù)在上有無數(shù)個零點,命題③錯誤;對于命題④,若函數(shù)取最大值時,,則,,當(dāng)時,函數(shù)取最大值,命題④正確.因此,正確的命題序號為①②④.故選A.【點睛】本題考查與余弦函數(shù)基本性質(zhì)相關(guān)的命題真假的判斷,解題時要結(jié)合自變量的取值范圍去絕對值,結(jié)合余弦函數(shù)的基本性質(zhì)進行判斷,考查推理能力,屬于中等題.4、A【解析】根據(jù)函數(shù)的奇偶性和單調(diào)性,將不等式進行等價轉(zhuǎn)化,求解即可.【詳解】∵f(x)為偶函數(shù),∴f(x)=f(|x|).則f(|2x-1|)<f.又∵f(x)在[0,+∞)上單調(diào)遞增,∴|2x-1|<,解得<x<.故選:.【點睛】本題考查利用函數(shù)奇偶性和單調(diào)性解不等式,屬綜合基礎(chǔ)題.5、D【解析】根據(jù)三視圖可知,幾何體是一條側(cè)棱垂直于底面的四棱錐,底面是邊長為的正方形,如下圖所示,該幾何體的四個側(cè)面均為直角三角形,側(cè)面積,底面積,所以該幾何體的表面積為,故選D.考點:三視圖與表面積.【易錯點睛】本題考查三視圖與表面積,首先應(yīng)根據(jù)三視圖還原幾何體,需要一定的空間想象能力,另外解本題時,也可以將幾何體置于正方體中,這樣便于理解、觀察和計算.根據(jù)三視圖求表面積一定要弄清點、線、面的平行和垂直關(guān)系,能根據(jù)三視圖中的數(shù)據(jù)找出直觀圖中的數(shù)據(jù),從而進行求解,考查學(xué)生空間想象能力和計算能力.6、B【解析】所以,所以。故選B。7、B【解析】首先根據(jù)題中所給的三視圖,得到點M和點N在圓柱上所處的位置,將圓柱的側(cè)面展開圖平鋪,點M、N在其四分之一的矩形的對角線的端點處,根據(jù)平面上兩點間直線段最短,利用勾股定理,求得結(jié)果.【詳解】根據(jù)圓柱的三視圖以及其本身的特征,將圓柱的側(cè)面展開圖平鋪,可以確定點M和點N分別在以圓柱的高為長方形的寬,圓柱底面圓周長的四分之一為長的長方形的對角線的端點處,所以所求的最短路徑的長度為,故選B.點睛:該題考查的是有關(guān)幾何體的表面上兩點之間的最短距離的求解問題,在解題的過程中,需要明確兩個點在幾何體上所處的位置,再利用平面上兩點間直線段最短,所以處理方法就是將面切開平鋪,利用平面圖形的相關(guān)特征求得結(jié)果.8、A【解析】根據(jù)特殊角的三角函數(shù)值以及充分條件與必要條件的定義可得結(jié)果.【詳解】當(dāng)時,顯然成立,即若則成立;當(dāng)時,,即若則不成立;綜上得p是q充分不必要條件,故選:A.9、C【解析】:①若α,則,根據(jù)線面垂直的性質(zhì)可知正確;②若,則;不正確,也可能是m在α內(nèi);錯誤;③若,則;據(jù)線面垂直的判定定理可知正確;④若,根據(jù)線面平行判定的定理可知正確得到①③④正確,故選C10、D【解析】設(shè),由奇函數(shù)的定義可得出,即可得解.【詳解】當(dāng)時,,由奇函數(shù)的定義可得.故選:D.11、B【解析】由三視圖還原的幾何體如圖所示,結(jié)合長方體的體積公式計算即可.【詳解】由圖可知,該幾何體是在一個長方體的右上角挖去一個小長方體,如圖,故該幾何體的體積為故選:B12、C【解析】由求出的值,再由誘導(dǎo)公式可求出答案【詳解】因為,所以,所以,故選:C二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、.【解析】本題直接運算即可得到答案.【詳解】解:,故答案為:.【點睛】本題考查指數(shù)冪的運算、對數(shù)的運算,是基礎(chǔ)題.14、6【解析】利用弧長公式以及扇形周長公式即可解出弧長和半徑,再利用扇形面積公式即可求解.【詳解】設(shè)扇形的半徑為,弧長為,則,解得,所以,答案為6.【點睛】主要考查弧長公式、扇形的周長公式以及面積公式,屬于基礎(chǔ)題.15、.【解析】先求圓錐底面圓的半徑,再由直角三角形求得圓錐的高,代入公式計算圓錐的體積即可。【詳解】設(shè)圓錐底面半徑為r,則由題意得,解得.∴底面圓的面積為.又圓錐的高.故圓錐的體積.【點睛】此題考查圓錐體積計算,關(guān)鍵是找到底面圓半徑和高代入計算即可,屬于簡單題目。16、【解析】結(jié)合扇形的面積公式即可求出圓心角的大小.【詳解】解:設(shè)圓心角為,半徑為,則,由題意知,,解得,故答案為:三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)在上單調(diào)遞增,在上單調(diào)遞減;(2).【解析】(1)本題可根據(jù)正弦函數(shù)單調(diào)性得出結(jié)果;(2)可令,通過計算得出或,然后根據(jù)在上有兩個零點即可得出結(jié)果.【詳解】(1)令,解得,令,解得,故函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.(2),令,則,,故或,解得或,因為在上有兩個零點,所以,解得,故實數(shù)的取值范圍為.18、(1);(2)答案見解析.【解析】(1)根據(jù)給定條件利用一元二次不等式恒成立求解作答.(2)在給定條件下分類解一元二次不等式即可作答.【小問1詳解】,恒成立等價于,,當(dāng)時,,對一切實數(shù)不恒成立,則,此時必有,即,解得,所以實數(shù)的取值范圍是.【小問2詳解】依題意,因,則,當(dāng)時,,解得,當(dāng)時,,解得或,當(dāng)時,,解得或,所以,當(dāng)時,原不等式的解集為;當(dāng)時,原不等式的解集為或;當(dāng)時,原不等式的解集為或.19、(1)偶函數(shù),證明見解析,(2)【解析】(1)利用定義判斷函數(shù)的奇偶性;(2)利用該函數(shù)的對稱性,數(shù)形結(jié)合得到實數(shù)a的值.【詳解】(1)函數(shù)的定義域為R,,即,∴為偶函數(shù),(2)y=f(x)的圖象關(guān)于y軸對稱,由題意知f(x)=0只有x=0這一個零點,把(0,0)代入函數(shù)表達式得:a2+2a﹣3=0,解得:a=﹣3,或a=1,當(dāng)a=1時,在上單調(diào)遞增,∴此時顯然符合條件;當(dāng)a=﹣3時,,,即,即在上存在零點,知f(x)至少有三個根,不符合所以,符合條件的實數(shù)a的值為1【點睛】本題主要考查函數(shù)零點的概念,要注意函數(shù)的零點不是點,而是函數(shù)f(x)=0時的x的值,屬于中檔題20、(1)(2)【解析】(1)利用圓柱的側(cè)面積公式計算出側(cè)面積.(2)利用等體積法求得到平面的距離.【小問1詳解】圓柱的底面半徑為,高為,所以圓柱的側(cè)面積為.【小問2詳解】是圓的直徑,所以,,.根據(jù)圓柱的幾何性質(zhì)可知,由于,所以平面,所以.,,設(shè)到平面的距離為,則,即.21、(1);(2)最大值,最小值為-1.【解析】(1)由圖可知,,可得,再將點代入得,結(jié)合,可得的值,即可求出函數(shù)的解析式;(2)根據(jù)函數(shù)的周期,可求時函數(shù)的最大值和最小值就是轉(zhuǎn)化為求函數(shù)在區(qū)間上的最大值和最小值,結(jié)合三角函數(shù)圖象,即可求出函數(shù)的最大值和最小值.試題解析:(1)由圖可知:,則∴,將點代入得,,∴,,即,∵∴∴函數(shù)的解析式為.(2)∵函數(shù)的周期是∴求時函數(shù)的最大值和最小值就是轉(zhuǎn)化為求函數(shù)在區(qū)間上的最大值和最小值.由圖像可知,當(dāng)時,函數(shù)取得最大值為,當(dāng)時,函數(shù)取得最小值為.∴函數(shù)在上的最大值為,最小值為-1.點睛:已知圖象求函數(shù)解析式的方法(1)根據(jù)圖象得到函數(shù)的周期,再根據(jù)求得(2)可根據(jù)代點法求解,代點時一般將最值點的坐標(biāo)代入解析式;也可用“五點法”求解,用此法時需要先判斷出“第一點”的位置,再結(jié)合圖象中的點求出的值(3)在本題中運用了代點的方法求得的值,一般情況下可通過觀察圖象得到的值22、(1)第4組的頻率為0.2,作圖見解析(2)樣本中位數(shù)的估計值為,平均數(shù)為87.25(3)0.9【解析】(1)利用頻率和為1,計算可得答案,計算可得第四個矩形的高度為0.2÷5=0.04,由此作圖即可;(2)設(shè)樣本的中位數(shù)為x,由5×0.01+5×0.07+(x﹣85)×0.06=0.5解出即可得到中位數(shù),根據(jù)77.5×0.05+82.5×0.35+87.5×0.30+92.5×0.20+97.5×0.10計算即可得到平均數(shù);(3)通過列舉法可得所有基本事件的總數(shù)以及至少有一人是“優(yōu)秀”的總數(shù),再利用古典概型概率公式計算可得.【詳解】(1)其它組的頻率為(0.01+0.07+0.06+0.02)×5=0.8,所以第4組的頻率為0.2,頻率分布圖如圖:(2)設(shè)樣本的中位數(shù)為x,則5×0.01+5×0.07+(x﹣85)×0.06=0.5,解得x,∴樣本中位數(shù)的估計值為,平均數(shù)為77.5×0.05+82.5×0.35+87.5×0.30+92.5×0.20+97.5×0.10=87.25;(3)依題意良好的人數(shù)為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國糖水黃桃行業(yè)投資前景及策略咨詢報告
- 2025至2030年中國端子測力器市場分析及競爭策略研究報告001
- 2025至2030年中國砂套市場分析及競爭策略研究報告001
- 2025至2030年中國石榴樹苗數(shù)據(jù)監(jiān)測研究報告
- 農(nóng)村用水井施工合同標(biāo)準(zhǔn)文本
- 多元化教學(xué)方法的實施計劃
- 完善演出活動安全控制計劃
- 提升保安工作能力的多元路徑計劃
- 公司與專家顧問簽訂的聘用合同年
- 品牌文化與企業(yè)使命的結(jié)合計劃
- 2025年北京市西城區(qū)高三一模物理試卷(含答案)
- 網(wǎng)絡(luò)運維方案
- 江蘇省常熟市2022-2023學(xué)年高一下學(xué)期期中考試歷史試題 含答案
- 2025年04月國家廣播電視總局直屬事業(yè)單位公開招聘310人筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 地鐵施工監(jiān)測監(jiān)理細則
- 呼吸機的使用操作流程
- “雙碳”目標(biāo)下數(shù)智化供應(yīng)鏈運作管理策略研究
- 江蘇省蘇州市2024-2025學(xué)年度第二學(xué)期七年級歷史期中模擬試卷(1)含答案
- 住建局安全管理匯報
- 2024年山東省國控設(shè)計集團有限公司招聘筆試真題
- 學(xué)校校園膳食監(jiān)督家長委員會履職承諾協(xié)議書
評論
0/150
提交評論