版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024屆吉林省延邊朝鮮族自治州汪清縣第六中學高一數(shù)學第二學期期末聯(lián)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖是一圓錐的三視圖,正視圖和側(cè)視圖都是頂角為120°的等腰三角形,若過該圓錐頂點S的截面三角形面積的最大值為2,則該圓錐的側(cè)面積為A. B. C. D.42.干支紀年法是中國歷法上自古以來就一直使用的紀年方法,主要方式是由十天干(甲、乙、丙、丁、戊、己、廢、辛、壬、朵)和十二地支(子、丑、卯、辰、已、午、未、中、百、戊、)按順序配對,周而復始,循環(huán)記錄.如:1984年是甲子年,1985年是乙丑年,1994年是甲戌年,則數(shù)學王子高斯出生的1777年是干支紀年法中的()A.丁申年 B.丙寅年 C.丁酉年 D.戊辰年3.在中,角、、所對的邊長分別為,,,,,,則的面積為()A. B. C. D.94.已知向量滿足:,,,則()A. B. C. D.5.樣本中共有個個體,其值分別為、、、、.若該樣本的平均值為,則樣本的方差為()A. B. C. D.6.已知的內(nèi)角、、的對邊分別為、、,且,若,則的外接圓面積為()A. B. C. D.7.已知圓柱的軸截面為正方形,且該圓柱的側(cè)面積為,則該圓柱的體積為A. B. C. D.8.在等差數(shù)列中,若,則()A. B. C. D.9.已知點到直線的距離為1,則的值為()A. B. C. D.10.若直線始終平分圓的周長,則的最小值為()A. B.5 C.2 D.10二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列的前n項和,則___________.12.在ΔABC中,a比c長4,b比c長2,且最大角的余弦值是-12,則13.等差數(shù)列中,,,設為數(shù)列的前項和,則_________.14.在中,已知,,,則角__________.15.已知函數(shù),(常數(shù)、),若當且僅當時,函數(shù)取得最大值1,則實數(shù)的數(shù)值為______.16.如圖,將一個長方體用過相鄰三條棱的中點的平面截出一個棱錐,則該棱錐的體積與剩下的幾何體體積的比為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列的前n項和為,且,.(1)求數(shù)列的通項公式;(2)若等差數(shù)列滿足,且,,成等比數(shù)列,求c.18.已知是遞增的等比數(shù)列,且,.(1)求數(shù)列的通項公式;(2)為各項非零的等差數(shù)列,其前n項和為,已知,求數(shù)列的前n項和.19.如圖,在正三棱柱中,邊的中點為,.⑴求三棱錐的體積;⑵點在線段上,且平面,求的值.20.已知向量(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)在中,,若,求的周長.21.知兩條直線l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8,求當m為何值時,l1與l2:(1)垂直;(2)平行,并求出兩平行線間的距離.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】
過該圓錐頂點S的截面三角形面積最大是直角三角形,根據(jù)面積為2求出圓錐的母線長,再根據(jù)正視圖求圓錐底面圓的半徑,最后根據(jù)扇形面積公式求圓錐的側(cè)面積.【題目詳解】過該圓錐頂點S的截面三角形面積最直角三角形,設圓錐的母線長和底面圓的半徑分別為,則,即,又,所以圓錐的側(cè)面積;故選B.【題目點撥】本題考查三視圖及圓錐有關計算,此題主要難點在于判斷何時截面三角形面積最大,要結(jié)合三角形的面積公式,當,即截面是等腰直角三角時面積最大.2、C【解題分析】
天干是以10為公差的等差數(shù)列,地支是以12為公差的等差數(shù)列,按照這個規(guī)律進行推理,即可得到結(jié)果.【題目詳解】由題意,天干是以10為公差的等差數(shù)列,地支是以12為公差的等差數(shù)列,1994年是甲戌年,則1777的天干為丁,地支為酉,故選:C.【題目點撥】本題主要考查了等差數(shù)列的定義及等差數(shù)列的性質(zhì)的應用,其中解答中認真審題,合理利用等差數(shù)列的定義,以及等差數(shù)列的性質(zhì)求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.3、A【解題分析】
,利用正弦定理,和差公式化簡可得,再利用三角形面積計算公式即可得出.【題目詳解】化為:的面積故選:【題目點撥】本題考查正弦定理與兩角和余弦公式化簡求值,屬于基礎題.4、D【解題分析】
首先根據(jù)題中條件求出與的數(shù)量積,然后求解即可.【題目詳解】由題有,即,,所以.故選:D.【題目點撥】本題主要考查了向量的模,屬于基礎題.5、D【解題分析】
根據(jù)樣本的平均數(shù)計算出的值,再利用方差公式計算出樣本的方差.【題目詳解】由題意可知,,解得,因此,該樣本的方差為,故選:D.【題目點撥】本題考查方差與平均數(shù)的計算,靈活利用平均數(shù)與方差公式進行求解是解本題的關鍵,考查運算求解能力,屬于基礎題.6、D【解題分析】
先化簡得,再利用正弦定理求出外接圓的半徑,即得的外接圓面積.【題目詳解】由題得,所以,所以,所以,所以.由正弦定理得,所以的外接圓面積為.故選D【題目點撥】本題主要考查正弦定理余弦定理解三角形,意在考查學生對這些知識的理解掌握水平和分析推理能力.7、C【解題分析】
設圓柱的底面半徑,該圓柱的高為,利用側(cè)面積得到半徑,再計算體積.【題目詳解】設圓柱的底面半徑.因為圓柱的軸截面為正方形,所以該圓柱的高為因為該圓柱的側(cè)面積為,所以,解得,故該圓柱的體積為.故答案選C【題目點撥】本題考查了圓柱的體積,意在考查學生的計算能力和空間想象能力.8、B【解題分析】
由等差數(shù)列的性質(zhì)可得,則答案易求.【題目詳解】在等差數(shù)列中,因為,所以.所以.故選B.【題目點撥】本題考查等差數(shù)列性質(zhì)的應用.在等差數(shù)列中,若,則.特別地,若,則.9、D【解題分析】
根據(jù)點到直線的距離公式列式求解參數(shù)即可.【題目詳解】由題,,因為,故.故選:D【題目點撥】本題主要考查了點到線的距離公式求參數(shù)的問題,屬于基礎題.10、B【解題分析】試題分析:把圓的方程化為標準方程得,所以圓心坐標為半徑,因為直線始終平分圓的周長,所以直線過圓的圓心,把代入直線得;即,在直線上,是點與點的距離的平方,因為到直線的距離,所以的最小值為,故選B.考點:1、圓的方程及幾何性質(zhì);2、點到直線的距離公式及最值問題的應用.【方法點晴】本題主要考查圓的方程及幾何性質(zhì)、點到直線的距離公式及最值問題的應用,屬于難題.解決解析幾何的最值問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關結(jié)論來解決,非常巧妙;二是將解析幾何中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法,本題就是利用幾何意義,將的最小值轉(zhuǎn)化為點到直線的距離解答的.二、填空題:本大題共6小題,每小題5分,共30分。11、17【解題分析】
根據(jù)所給的通項公式,代入求得,并由代入求得.即可求得的值.【題目詳解】數(shù)列的前n項和,則,而,,所以,則,故答案為:.【題目點撥】本題考查了數(shù)列前n項和通項公式的應用,遞推法求數(shù)列的項,屬于基礎題.12、15【解題分析】
由a比c長4,b比c長2,用c表示出a與b,可得出a為最大邊,即A為最大角,可得出cosA的值,由A為三角形的內(nèi)角,利用特殊角的三角函數(shù)值求出A的度數(shù),同時利用余弦定理表示出cosA,將表示出的a與b代入,并根據(jù)最大角的余弦值,得到關于c的方程,求出方程的解得到c的值,然后由b,c及sinA的值,利用三角形的面積公式即可求出三角形ABC的面積.【題目詳解】根據(jù)題意得:a=c+4,b=c+2,則a為最長邊,∴A為最大角,又cosA=-12,且∴A=120cos整理得:c2-c-6=0,即(c?3)(解得:c=3或c=?2(舍去),∴a=3+4=7,b=3+2=5,則△ABC的面積S=12bcsinA=15故答案為:153【題目點撥】余弦定理一定要熟記兩種形式:(1)a2=b2+13、【解題分析】
由等差數(shù)列的性質(zhì)可得出的值,然后利用等差數(shù)列的求和公式可求出的值.【題目詳解】由等差數(shù)列的基本性質(zhì)可得,因此,.故答案為:.【題目點撥】本題考查等差數(shù)列求和,同時也考查了等差數(shù)列基本性質(zhì)的應用,考查計算能力,屬于基礎題.14、【解題分析】
先由正弦定理得到角A的大小,再由三角形內(nèi)角和為得到結(jié)果.【題目詳解】根據(jù)三角形正弦定理得到:,故得到或,因為故得到故答案為.【題目點撥】在解與三角形有關的問題時,正弦定理、余弦定理是兩個主要依據(jù).解三角形時,有時可用正弦定理,有時也可用余弦定理,應注意用哪一個定理更方便、簡捷一般來說,當條件中同時出現(xiàn)及、時,往往用余弦定理,而題設中如果邊和正弦、余弦函數(shù)交叉出現(xiàn)時,往往運用正弦定理將邊化為正弦函數(shù)再結(jié)合和、差、倍角的正余弦公式進行解答.15、-1【解題分析】
先將函數(shù)轉(zhuǎn)化成同名三角函數(shù),再結(jié)合二次函數(shù)性質(zhì)進行求解即可【題目詳解】令,,對稱軸為;當時,時函數(shù)值最大,,解得;當時,對稱軸為,函數(shù)在時取到最大值,與題設矛盾;當時,時函數(shù)值最大,,解得;故的數(shù)值為:-1故答案為:-1【題目點撥】本題考查換元法在三角函數(shù)中的應用,分類討論求解函數(shù)最值,屬于中檔題16、【解題分析】
求出長方體體積與三棱錐的體積后即可得到棱錐的體積與剩下的幾何體體積之比.【題目詳解】設長方體長寬高分別為,,,所以長方體體積,三棱錐體積,所以棱錐的體積與剩下的幾何體體積的之比為:.故答案為:.【題目點撥】本題主要考查了長方體體積公式,三棱錐體積公式,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】
(1)根據(jù)題意,數(shù)列為1為首項,4為公差的等差數(shù)列,根據(jù)等差數(shù)列通項公式計算即可;(2)由(1)可求數(shù)列的前n項和為,根據(jù),,成等差數(shù)列及,,成等比數(shù)列,利用等差、等比數(shù)列性質(zhì)可求出c.【題目詳解】(1),,,故數(shù)列是以1為首項,4為公差的等差數(shù)列..(2)由(1)知,,,,,,法1:,,成等比數(shù)列,,即,整理得:,或.①當時,,所以(定值),滿足為等差數(shù)列,②當時,,,,,不滿足,故此時數(shù)列不為等差數(shù)列(舍去).法2:因為為等差數(shù)列,所以,即,解得或.①當時,滿足,,成等比數(shù)列,②當時,,,,不滿足,,成等比數(shù)列(舍去),綜上可得.【題目點撥】本題考查等差數(shù)列的通項及求和,等差數(shù)列、等比數(shù)列性質(zhì)的應用,解決此類問題通常借助方程思想列方程(組)求解,屬于中等題.18、(1);(2)【解題分析】
(1){an}是遞增的等比數(shù)列,公比設為q,由等比數(shù)列的中項性質(zhì),結(jié)合等比數(shù)列的通項公式解方程可得所求;(2)運用等差數(shù)列的求和公式和等差數(shù)列中項性質(zhì),求得bn=2n+1,再由數(shù)列的錯位相減法求和,化簡可得所求和.【題目詳解】(1)∵是遞增的等比數(shù)列,∴,,又,∴,是的兩根,∴,,∴,.(2)∵,∴由已知得,∴∴,化簡可得.【題目點撥】本題考查數(shù)列的通項和求和,等差等比數(shù)列的通項通常是列方程組解首項及公差(比),數(shù)列求和常見的方法有:裂項相消和錯位相減法,考查計算能力,屬于中等題.19、(1)(2)【解題分析】
(1)由題可得平面,故,從而求得三棱錐的體積;(2)連接交于,連接交于,連結(jié),由平面可得,由正三棱柱的性質(zhì)可得,從而得到的值.【題目詳解】⑴因為為正三棱柱所以平面⑵連接交于,連接交于,連結(jié)因為//平面,平面,平面平面,所以,因為為正三棱柱,所以側(cè)面和側(cè)面為平行四邊形,從而有為的中點,于是為的中點所以,因為為邊的中點,所以也為邊中點,從而【題目點撥】本題考查三棱錐的體積,線面垂直的性質(zhì),正三棱柱的性質(zhì)等知識,屬于中檔題.20、(1);(2)【解題分析】
(1)根據(jù)向量的數(shù)量積公式、二倍角公式及輔助角公式將化簡為,然后利用三角函數(shù)的性質(zhì),即可求得的單調(diào)減區(qū)間;(2)由(1)及可求得,由可得,再結(jié)合余弦定理即可求得,進而可得的周長.【題目詳解】解:(1)所以函數(shù)的單調(diào)遞減區(qū)間為:(2),,又因在中,,,設的三個內(nèi)角所對的邊分別為,又,且,,則,所以的周長為.【題目點撥】本題考查平面向量的數(shù)量積公式,三角函數(shù)的二倍角公式、輔助角公式和三角函數(shù)的性質(zhì),以及利用正弦定理、余弦定理解三角形,考查理解辨析能力及求解運算能力,屬于中檔題.21、(1)m(2)m=﹣7,距離為【解題分析】
(1)由題意
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年研發(fā)合作合同(共享成果)
- 2025版?zhèn)€人房產(chǎn)買賣合同示范協(xié)議4篇
- 2025年食品飲料品牌獨家代理銷售合同范本6篇
- 二零二五版1209兩人合伙成立網(wǎng)絡直播平臺合作協(xié)議3篇
- 個人獨資企業(yè)股權(quán)變更協(xié)議模板一
- 2025年度物流倉儲設施租賃合同范本12篇
- 個性化翻譯合作合同(2024年版)一
- 教育信息化背景下的研究探索與挑戰(zhàn)
- 智慧教育背景下的數(shù)學競賽輔導方法探討
- 2025年度個人貸款合同擔保期限及續(xù)約規(guī)定3篇
- 餐廚垃圾收運安全操作規(guī)范
- 皮膚內(nèi)科過敏反應病例分析
- 電影《獅子王》的視聽語言解析
- 妊娠合并低鉀血癥護理查房
- 煤礦反三違培訓課件
- 向流程設計要效率
- 2024年中國航空發(fā)動機集團招聘筆試參考題庫含答案解析
- 當代中外公司治理典型案例剖析(中科院研究生課件)
- 動力管道設計手冊-第2版
- 2022年重慶市中考物理試卷A卷(附答案)
- Python繪圖庫Turtle詳解(含豐富示例)
評論
0/150
提交評論