版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
福建省泉州市永春縣華僑中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知扇形圓心角為,面積為,則扇形的弧長(zhǎng)等于()A. B. C. D.2.如果點(diǎn)位于第四象限,則角是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角3.設(shè)等比數(shù)列的前項(xiàng)和為,若,,則()A.63 B.62 C.61 D.604.在中,,,,點(diǎn)P是內(nèi)(包括邊界)的一動(dòng)點(diǎn),且(),則的最大值為()A.6 B. C. D.65.函數(shù)(其中,,)的圖象如圖所示,為了得到的圖象,只需把的圖象上所有的點(diǎn)()A.向右平移個(gè)單位長(zhǎng)度 B.向左平移個(gè)單位長(zhǎng)度C.向右平移個(gè)單位長(zhǎng)度 D.向左平移個(gè)單位長(zhǎng)度6.已知函數(shù)是連續(xù)的偶函數(shù),且時(shí),是單調(diào)函數(shù),則滿足的所有之積為()A. B. C. D.7.有5支彩筆(除顏色外無差別),顏色分別為紅、黃、藍(lán)、綠、紫.從這5支彩筆中任取2支不同顏色的彩筆,則取出的2支彩筆中含有紅色彩筆的概率為A. B. C. D.8.下列條件不能確定一個(gè)平面的是()A.兩條相交直線 B.兩條平行直線 C.直線與直線外一點(diǎn) D.共線的三點(diǎn)9.兩圓和的位置關(guān)系是()A.相離 B.相交 C.內(nèi)切 D.外切10.?dāng)?shù)列為等比數(shù)列,若,,數(shù)列的前項(xiàng)和為,則A. B. C.7 D.31二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,在B處觀測(cè)到一貨船在北偏西方向上距離B點(diǎn)1千米的A處,碼頭C位于B的正東千米處,該貨船先由A朝著C碼頭C勻速行駛了5分鐘到達(dá)C,又沿著與AC垂直的方向以同樣的速度勻速行駛5分鐘后到達(dá)點(diǎn)D,此時(shí)該貨船到點(diǎn)B的距離是________千米.12.200名職工年齡分布如圖所示,從中隨機(jī)抽取40名職工作樣本,采用系統(tǒng)抽樣方法,按1~200編號(hào),分為40組,分別為1~5,6~10,…,196~200,若第5組抽取號(hào)碼為22,則第8組抽取號(hào)碼為________.若采用分層抽樣,40歲以下年齡段應(yīng)抽取________人.13.若是三角形的內(nèi)角,且,則等于_____________.14.給出下列四個(gè)命題:①正切函數(shù)在定義域內(nèi)是增函數(shù);②若函數(shù),則對(duì)任意的實(shí)數(shù)都有;③函數(shù)的最小正周期是;④與的圖象相同.以上四個(gè)命題中正確的有_________(填寫所有正確命題的序號(hào))15.如圖,緝私艇在處發(fā)現(xiàn)走私船在方位角且距離為12海里的處正以每小時(shí)10海里的速度沿方位角的方向逃竄,緝私艇立即以每小時(shí)14海里的速度追擊,則緝私艇追上走私船所需要的時(shí)間是__________小時(shí).16.已知圓錐的頂點(diǎn)為,母線,所成角的余弦值為,與圓錐底面所成角為45°,若的面積為,則該圓錐的側(cè)面積為__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),數(shù)列中,若,且.(1)求證:數(shù)列是等比數(shù)列;(2)設(shè)數(shù)列的前項(xiàng)和為,求證:.18.某高校在2012年的自主招生考試成績(jī)中隨機(jī)抽取名中學(xué)生的筆試成績(jī),按成績(jī)分組,得到的頻率分布表如表所示.組號(hào)分組頻數(shù)頻率第1組5第2組①第3組30②第4組20第5組10(1)請(qǐng)先求出頻率分布表中位置的相應(yīng)數(shù)據(jù),再完成頻率分布直方圖;(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績(jī)高的第組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試;(3)在(2)的前提下,學(xué)校決定在名學(xué)生中隨機(jī)抽取名學(xué)生接受考官進(jìn)行面試,求:第組至少有一名學(xué)生被考官面試的概率.19.設(shè)a為實(shí)數(shù),函數(shù),(1)若,求不等式的解集;(2)是否存在實(shí)數(shù)a,使得函數(shù)在區(qū)間上既有最大值又有最小值?若存在,求出實(shí)數(shù)a的取值范圍;若不存在,請(qǐng)說明理由;(3)寫出函數(shù)在R上的零點(diǎn)個(gè)數(shù)(不必寫出過程).20.正項(xiàng)數(shù)列:,滿足:是公差為的等差數(shù)列,是公比為2的等比數(shù)列.(1)若,求數(shù)列的所有項(xiàng)的和;(2)若,求的最大值;(3)是否存在正整數(shù),滿足?若存在,求出的值;若不存在,請(qǐng)說明理由.21.在城市舊城改造中,某小區(qū)為了升級(jí)居住環(huán)境,擬在小區(qū)的閑置地中規(guī)劃一個(gè)面積為的矩形區(qū)域(如圖所示),按規(guī)劃要求:在矩形內(nèi)的四周安排寬的綠化,綠化造價(jià)為200元/,中間區(qū)域地面硬化以方便后期放置各類健身器材,硬化造價(jià)為100元/.設(shè)矩形的長(zhǎng)為.(1)設(shè)總造價(jià)(元)表示為長(zhǎng)度的函數(shù);(2)當(dāng)取何值時(shí),總造價(jià)最低,并求出最低總造價(jià).
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解題分析】
根據(jù)扇形面積公式得到半徑,再計(jì)算扇形弧長(zhǎng).【題目詳解】扇形弧長(zhǎng)故答案選C【題目點(diǎn)撥】本題考查了扇形的面積和弧長(zhǎng)公式,解出扇形半徑是解題的關(guān)鍵,意在考查學(xué)生的計(jì)算能力.2、C【解題分析】
由點(diǎn)位于第四象限列不等式,即可判斷的正負(fù),問題得解.【題目詳解】因?yàn)辄c(diǎn)位于第四象限所以,所以所以角是第三象限角故選C【題目點(diǎn)撥】本題主要考查了點(diǎn)的坐標(biāo)與點(diǎn)的位置的關(guān)系,還考查了等價(jià)轉(zhuǎn)化思想及三角函數(shù)值的正負(fù)與角的終邊的關(guān)系,屬于基礎(chǔ)題.3、A【解題分析】
由等比數(shù)列的性質(zhì)可得S2,S4-S2,S6-S4成等比數(shù)列,代入數(shù)據(jù)計(jì)算可得.【題目詳解】因?yàn)椋?,成等比?shù)列,即3,12,成等比數(shù)列,所以,解得.【題目點(diǎn)撥】本題考查等比數(shù)列的性質(zhì)與前項(xiàng)和的計(jì)算,考查運(yùn)算求解能力.4、B【解題分析】
利用余弦定理和勾股定理可證得;取,作,根據(jù)平面向量平行四邊形法則可知點(diǎn)軌跡為線段,由此可確定,利用勾股定理可求得結(jié)果.【題目詳解】由余弦定理得:如圖,取,作,交于在內(nèi)(包含邊界)點(diǎn)軌跡為線段當(dāng)與重合時(shí),最大,即故選:【題目點(diǎn)撥】本題考查向量模長(zhǎng)最值的求解問題,涉及到余弦定理解三角形的應(yīng)用;解題關(guān)鍵是能夠根據(jù)平面向量線性運(yùn)算確定動(dòng)點(diǎn)軌跡,根據(jù)軌跡確定最值點(diǎn).5、C【解題分析】
通過圖象可以知道:最低點(diǎn)的縱坐標(biāo)為,函數(shù)的圖象與橫軸的交點(diǎn)的坐標(biāo)為,與之相鄰的最低點(diǎn)的坐標(biāo)為,這樣可以求出和最小正周期,利用余弦型函數(shù)最小正周期公式,可以求出,把零點(diǎn)代入解析式中,可以求出,這樣可以求出函數(shù)的解析式,利用誘導(dǎo)公式化為正弦型三角函數(shù)解析式形式,最后利用平移變換解析式的變化得出正確答案.【題目詳解】由圖象可知:函數(shù)的最低點(diǎn)的縱坐標(biāo)為,函數(shù)的圖象與橫軸的交點(diǎn)的坐標(biāo)為,與之相鄰的最低點(diǎn)的坐標(biāo)為,所以,設(shè)函數(shù)的最小正周期為,則有,而,把代入函數(shù)解析式中,得,所以,而,顯然由向右平移個(gè)單位長(zhǎng)度得到的圖象,故本題選C.【題目點(diǎn)撥】本題考查了由函數(shù)圖象求余弦型函數(shù)解析式,考查了正弦型函數(shù)圖象之間的平移變換規(guī)律.6、D【解題分析】
由y=f(x+2)為偶函數(shù)分析可得f(x)關(guān)于直線x=2對(duì)稱,進(jìn)而分析可得函數(shù)f(x)在(2,+∞)和(﹣∞,2)上都是單調(diào)函數(shù),據(jù)此可得若f(x)=f(1),則有x=1或4﹣x=1,變形為二次方程,結(jié)合根與系數(shù)的關(guān)系分析可得滿足f(x)=f(1)的所有x之積,即可得答案.【題目詳解】根據(jù)題意,函數(shù)y=f(x+2)為偶函數(shù),則函數(shù)f(x)關(guān)于直線x=2對(duì)稱,又由當(dāng)x>2時(shí),函數(shù)y=f(x)是單調(diào)函數(shù),則其在(﹣∞,2)上也是單調(diào)函數(shù),若f(x)=f(1),則有x=1或4﹣x=1,當(dāng)x=1時(shí),變形可得x2+3x﹣3=0,有2個(gè)根,且兩根之積為﹣3,當(dāng)4﹣x=1時(shí),變形可得x2+x﹣13=0,有2個(gè)根,且兩根之積為﹣13,則滿足f(x)=f(1)的所有x之積為(﹣3)×(﹣13)=39;故選:D.【題目點(diǎn)撥】本題考查抽象函數(shù)的應(yīng)用,涉及函數(shù)的對(duì)稱性與單調(diào)性的綜合應(yīng)用,屬于綜合題.7、C【解題分析】選取兩支彩筆的方法有種,含有紅色彩筆的選法為種,由古典概型公式,滿足題意的概率值為.本題選擇C選項(xiàng).考點(diǎn):古典概型名師點(diǎn)睛:對(duì)于古典概型問題主要把握基本事件的種數(shù)和符合要求的事件種數(shù),基本事件的種數(shù)要注意區(qū)別是排列問題還是組合問題,看抽取時(shí)是有、無順序,本題從這5支彩筆中任取2支不同顏色的彩筆,是組合問題,當(dāng)然簡(jiǎn)單問題建議采取列舉法更直觀一些.8、D【解題分析】
根據(jù)確定平面的公理和推論逐一判斷即可得解.【題目詳解】解:對(duì)選項(xiàng):經(jīng)過兩條相交直線有且只有一個(gè)平面,故錯(cuò)誤.對(duì)選項(xiàng):經(jīng)過兩條平行直線有且只有一個(gè)平面,故錯(cuò)誤.對(duì)選項(xiàng):經(jīng)過直線與直線外一點(diǎn)有且只有一個(gè)平面,故錯(cuò)誤.對(duì)選項(xiàng):過共線的三點(diǎn),有無數(shù)個(gè)平面,故正確;故選:.【題目點(diǎn)撥】本題主要考查確定平面的公理及推論.解題的關(guān)鍵是要對(duì)確定平面的公理及推論理解透徹,屬于基礎(chǔ)題.9、B【解題分析】
由圓的方程可得兩圓圓心坐標(biāo)和半徑;根據(jù)圓心距和半徑之間的關(guān)系,即可判斷出兩圓的位置關(guān)系.【題目詳解】由圓的方程可知,兩圓圓心分別為:和;半徑分別為:,則圓心距:兩圓位置關(guān)系為:相交本題正確選項(xiàng):【題目點(diǎn)撥】本題考查圓與圓位置關(guān)系的判定;關(guān)鍵是明確兩圓位置關(guān)系的判定是根據(jù)圓心距與兩圓半徑之間的長(zhǎng)度關(guān)系確定.10、A【解題分析】
先求等比數(shù)列通項(xiàng)公式,再根據(jù)等比數(shù)列求和公式求結(jié)果.【題目詳解】數(shù)列為等比數(shù)列,,,,解得,,數(shù)列的前項(xiàng)和為,.故選.【題目點(diǎn)撥】本題考查等比數(shù)列通項(xiàng)公式與求和公式,考查基本分析求解能力,屬基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解題分析】
先在中,由余弦定理算出和,然后在中由余弦定理即可求出.【題目詳解】由題意可得,在中,所以由余弦定理得:即,所以因?yàn)樗运运栽谥杏校杭垂蚀鸢笧椋?【題目點(diǎn)撥】本題考查三角形的解法,余弦定理的應(yīng)用,是基本知識(shí)的考查.12、371【解題分析】
由系統(tǒng)抽樣,編號(hào)是等距出現(xiàn)的規(guī)律可得,分層抽樣是按比例抽取人數(shù).【題目詳解】第8組編號(hào)是22+5+5+5=37,分層抽樣,40歲以下抽取的人數(shù)為50%×40=1(人).故答案為:37;1.【題目點(diǎn)撥】本題考查系統(tǒng)抽樣和分層抽樣,屬于基礎(chǔ)題.13、【解題分析】∵是三角形的內(nèi)角,且,∴故答案為點(diǎn)睛:本題是一道易錯(cuò)題,在上,,分兩種情況:若,則;若,則有兩種情況銳角或鈍角.14、②③④【解題分析】
①利用反例證明命題錯(cuò)誤;②先判斷為其中一條對(duì)稱軸;③通過恒等變換化成;④對(duì)兩個(gè)解析式進(jìn)行變形,得到定義域和對(duì)應(yīng)關(guān)系均一樣.【題目詳解】對(duì)①,當(dāng),顯然,但,所以,不符合增函數(shù)的定義,故①錯(cuò);對(duì)②,當(dāng)時(shí),,所以為的一條對(duì)稱軸,當(dāng)取,取時(shí),顯然兩個(gè)數(shù)關(guān)于直線對(duì)稱,所以,即成立,故②對(duì);對(duì)③,,,故③對(duì);對(duì)④,因?yàn)?,,兩個(gè)函數(shù)的定義域都是,解析式均為,所以函數(shù)圖象相同,故④對(duì).綜上所述,故填:②③④.【題目點(diǎn)撥】本題對(duì)三角函數(shù)的定義域、值域、單調(diào)性、對(duì)稱性、周期性等知識(shí)進(jìn)行綜合考查,求解過程中要注意數(shù)形結(jié)合思想的應(yīng)用.15、【解題分析】
設(shè)緝私艇追上走私船所需要的時(shí)間為小時(shí),根據(jù)各自的速度表示出與,由,利用余弦定理列出關(guān)于的方程,求出方程的解即可得到的值.【題目詳解】解:設(shè)緝私艇上走私船所需要的時(shí)間為小時(shí),則,,在中,,根據(jù)余弦定理知:,或(舍去),故緝私艇追上走私船所需要的時(shí)間為2小時(shí).故答案為:.【題目點(diǎn)撥】本題考查了正弦、余弦定理,以及特殊角的三角函數(shù)值,熟練掌握正弦、余弦定理是解本題的關(guān)鍵,屬于中檔題.16、【解題分析】
分析:先根據(jù)三角形面積公式求出母線長(zhǎng),再根據(jù)母線與底面所成角得底面半徑,最后根據(jù)圓錐側(cè)面積公式求結(jié)果.詳解:因?yàn)槟妇€,所成角的余弦值為,所以母線,所成角的正弦值為,因?yàn)榈拿娣e為,設(shè)母線長(zhǎng)為所以,因?yàn)榕c圓錐底面所成角為45°,所以底面半徑為因此圓錐的側(cè)面積為三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析【解題分析】
(1)將代入到函數(shù)表達(dá)式中,得,兩邊都倒過來,即可證明數(shù)列是等比數(shù)列;(2)由(1)得出an的通項(xiàng)公式,然后根據(jù)不等式<在求和時(shí)進(jìn)行放縮法的應(yīng)用,再根據(jù)等比數(shù)列求和公式進(jìn)行計(jì)算,即可證出.【題目詳解】(1)由函數(shù),在數(shù)列中,若,得:,上式兩邊都倒過來,可得:==﹣2,∴﹣1=﹣2﹣1=﹣1=1(﹣1).∵﹣1=1.∴數(shù)列是以1為首項(xiàng),1為公比的等比數(shù)列.(2)由(1),可知:=1n,∴an=,n∈N*.∵當(dāng)n∈N*時(shí),不等式<成立.∴Sn=a1+a2+…+an===﹣?<.∴.【題目點(diǎn)撥】本題主要考查數(shù)列與函數(shù)的綜合應(yīng)用,根據(jù)條件推出數(shù)列的遞推公式,由遞推公式推出通項(xiàng)公式與放縮法的應(yīng)用是解決本題的兩個(gè)關(guān)鍵點(diǎn),屬于中檔題.18、(1)人,,直方圖見解析;(2)人、人、人;(3).【解題分析】
(1)由頻率分布直方圖能求出第組的頻數(shù),第組的頻率,從而完成頻率分布直方圖.(2)根據(jù)第組的頻數(shù)計(jì)算頻率,利用各層的比例,能求出第組分別抽取進(jìn)入第二輪面試的人數(shù).(3)設(shè)第組的位同學(xué)為,第組的位同學(xué)為,第組的位同學(xué)為,利用列舉法能出所有基本事件及滿足條件的基本事件的個(gè)數(shù),利用古典概型求得概率.【題目詳解】(1)①由題可知,第2組的頻數(shù)為人,②第組的頻率為,頻率分布直方圖如圖所示,
(2)因?yàn)榈诮M共有名學(xué)生,所以利用分層抽樣在名學(xué)生中抽取名學(xué)生進(jìn)入第二輪面試,每組抽取的人數(shù)分別為:第組:人,第組:人,第組:人,所以第組分別抽取人、人、人進(jìn)入第二輪面試.(3)設(shè)第組的位同學(xué)為,第組的位同學(xué)為,第組的位同學(xué)為,則從這六位同學(xué)中抽取兩位同學(xué)有種選法,分別為:,,,,,,,,,,,,,,,其中第組的位同學(xué)中至少有一位同學(xué)入選的有種,分別為:,,,∴第組至少有一名學(xué)生被考官面試的概率為.【題目點(diǎn)撥】本題考查頻率分直方圖、分層抽樣的應(yīng)用,考查概率的求法,考查數(shù)據(jù)處理能力、運(yùn)算求解能力,是基礎(chǔ)題.19、(1)(2)不存在這樣的實(shí)數(shù),理由見解析(3)見解析【解題分析】
(1)代入的值,通過討論的范圍,求出不等式的解集即可;(2)通過討論的范圍,求出函數(shù)的單調(diào)區(qū)間,再求出函數(shù)的最值,得到關(guān)于的不等式組,解出并判斷即可;(3)通過討論的范圍,判斷函數(shù)的零點(diǎn)個(gè)數(shù)即可【題目詳解】(1)當(dāng)時(shí),,則當(dāng)時(shí),,解得或,故;當(dāng)時(shí),,解集為,綜上,的解集為(2),顯然,,①當(dāng)時(shí),則在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,因?yàn)楹瘮?shù)在上既有最大值又有最小值,所以,,則,即,解得,故不存在這樣的實(shí)數(shù);②當(dāng)時(shí),則在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,因?yàn)楹瘮?shù)在上既有最大值又有最小值,故,,則,即,解得,故不存在這樣的實(shí)數(shù);③當(dāng)時(shí),則為上的遞增函數(shù),故函數(shù)在上不存在最大值和最小值,綜上,不存在這樣的實(shí)數(shù)(3)當(dāng)或時(shí),函數(shù)的零點(diǎn)個(gè)數(shù)為1;當(dāng)或時(shí),函數(shù)的零點(diǎn)個(gè)數(shù)為2;當(dāng)時(shí),函數(shù)的零點(diǎn)個(gè)數(shù)為3【題目點(diǎn)撥】本題考查分段函數(shù)的應(yīng)用,考查利用函數(shù)的單調(diào)性求最值,考查函數(shù)的零點(diǎn)個(gè)數(shù),著重考查分類討論思想20、(1)84;(2)1033;(3)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024天津旅游度假區(qū)土地承包使用權(quán)出租協(xié)議3篇
- 2024-2030年中國多層押出與切斷機(jī)商業(yè)計(jì)劃書
- 2024-2030年中國垃圾焚燒發(fā)電行業(yè)當(dāng)前經(jīng)濟(jì)形勢(shì)及投資建議研究報(bào)告
- 2024-2030年中國噴霧通風(fēng)玻璃鋼冷卻塔項(xiàng)目投資風(fēng)險(xiǎn)分析報(bào)告
- 2024年戰(zhàn)略合作:全方位市場(chǎng)營(yíng)銷協(xié)議3篇
- 2024年度工程欠款結(jié)算付款合同3篇
- 2024年度國有企業(yè)內(nèi)部基礎(chǔ)設(shè)施建設(shè)無償借款合同3篇
- 2024年度健康食品原材料研發(fā)與生產(chǎn)合作合同3篇
- 微專題鋰離子電池-2024高考化學(xué)一輪考點(diǎn)擊破
- 馬鞍山學(xué)院《社會(huì)組織與社會(huì)治理》2023-2024學(xué)年第一學(xué)期期末試卷
- 虛擬電廠(共30張PPT)(共29張PPT)
- 主題班會(huì) 交通安全教育
- 粉筆字入門課件
- PPE安全防護(hù)知識(shí)培訓(xùn)
- 中醫(yī)學(xué):常用穴位課件
- 取制樣操作規(guī)范
- 操辦婚慶事宜報(bào)告表參考模板范本
- 煤炭物流園區(qū)總體規(guī)劃(2016-2030)參考范本
- 四年級(jí)道德與法治上冊(cè) 《我的家庭貢獻(xiàn)與責(zé)任》教學(xué)課件
- 數(shù)字電子技術(shù)ppt課件完整版
- 趣味語文知識(shí)競(jìng)賽題集錦
評(píng)論
0/150
提交評(píng)論