




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
福建省福州三校聯(lián)盟2024屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某實驗單次成功的概率為0.8,記事件A為“在實驗條件相同的情況下,重復(fù)3次實驗,各次實驗互不影響,則3次實驗中至少成功2次”,現(xiàn)采用隨機(jī)模擬的方法估計事件4的概率:先由計算機(jī)給出0~9十個整數(shù)值的隨機(jī)數(shù),指定0,1表示單次實驗失敗,2,3,4,5,6,7,8,9表示單次實驗成功,以3個隨機(jī)數(shù)為組,代表3次實驗的結(jié)果經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù),如下表:752029714985034437863694141469037623804601366959742761428261根據(jù)以上方法及數(shù)據(jù),估計事件A的概率為()A.0.384 B.0.65 C.0.9 D.0.9042.已知變量,之間的線性回歸方程為,且變量,之間的一組相關(guān)數(shù)據(jù)如下表所示,則下列說法中錯誤的是()681012632A.變量,之間呈現(xiàn)負(fù)相關(guān)關(guān)系B.的值等于5C.變量,之間的相關(guān)系數(shù)D.由表格數(shù)據(jù)知,該回歸直線必過點3.若函數(shù)的定義域為M={x|-2≤x≤2},值域為N={y|0≤y≤2},則函數(shù)的圖像可能是()A. B. C. D.4.已知且為常數(shù),圓,過圓內(nèi)一點的直線與圓相交于兩點,當(dāng)弦最短時,直線的方程為,則的值為()A.2 B.3 C.4 D.55.下列函數(shù)中,在區(qū)間上為減函數(shù)的是A. B. C. D.6.從甲、乙、丙、丁四人中隨機(jī)選出人參加志愿活動,則甲被選中的概率為()A. B. C. D.7.袋中共有6個除了顏色外完全相同的球,其中有1個紅球,2個白球和3個黑球,從袋中任取兩球,兩球顏色為一白一黑的概率等于()A. B. C. D.8.設(shè),,在,,…,中,正數(shù)的個數(shù)是()A.15 B.16 C.18 D.209.已知圓(為圓心,且在第一象限)經(jīng)過,,且為直角三角形,則圓的方程為()A. B.C. D.10.已知均為銳角,,則=A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知正實數(shù)x,y滿足,則的最小值為________.12.已知實數(shù)滿足約束條件,若目標(biāo)函數(shù)僅在點處取得最小值,則的取值范圍是__________.13.如圖所示,在正三棱柱中,是的中點,,則異面直線與所成的角為____.14.已知等差數(shù)列的公差為,且,其前項和為,若滿足,,成等比數(shù)列,且,則______,______.15.正三棱錐的底面邊長為2,側(cè)面均為直角三角形,則此三棱錐的體積為.16.已知直線是函數(shù)(其中)圖象的一條對稱軸,則的值為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列為等比數(shù)列,,公比,且成等差數(shù)列.(1)求數(shù)列的通項公式;(2)設(shè),,求使的的取值范圍.18.不等式(1)若不等式的解集為或,求的值(2)若不等式的解集為,求的取值范圍19.銳角的內(nèi)角、、所對的邊分別為、、,若.(1)求;(2)若,,求的周長.20.已知,求(1)(2)21.已知數(shù)列的前項和,且滿足:,.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】
由隨機(jī)模擬實驗結(jié)合圖表計算即可得解.【題目詳解】由隨機(jī)模擬實驗可得:“在實驗條件相同的情況下,重復(fù)3次實驗,各次實驗互不影響,則3次實驗中最多成功1次”共141,601兩組隨機(jī)數(shù),則“在實驗條件相同的情況下,重復(fù)3次實驗,各次實驗互不影響,則3次實驗中至少成功2次”共組隨機(jī)數(shù),即事件的概率為,故選.【題目點撥】本題考查了隨機(jī)模擬實驗及識圖能力,屬于中檔題.2、C【解題分析】分析:根據(jù)平均數(shù)的計算公式,求得樣本中心為,代入回歸直線的方程,即可求解,得到樣本中心,再根據(jù)之間的變化趨勢,可得其負(fù)相關(guān)關(guān)系,即可得到答案.詳解:由題意,根據(jù)上表可知,即數(shù)據(jù)的樣本中心為,把樣本中心代入回歸直線的方程,可得,解得,則,即數(shù)據(jù)的樣本中心為,由上表中的數(shù)據(jù)可判定,變量之間隨著的增大,值變小,所以呈現(xiàn)負(fù)相關(guān)關(guān)系,由于回歸方程可知,回歸系數(shù),而不是,所以C是錯誤的,故選C.點睛:本題主要考查了數(shù)據(jù)的平均數(shù)的計算公式,回歸直線方程的特點,以及相關(guān)關(guān)系的判定等基礎(chǔ)知識的應(yīng)用,其中熟記回歸分析的基本知識點是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力.3、B【解題分析】因為對A不符合定義域當(dāng)中的每一個元素都有象,即可排除;對B滿足函數(shù)定義,故符合;對C出現(xiàn)了定義域當(dāng)中的一個元素對應(yīng)值域當(dāng)中的兩個元素的情況,不符合函數(shù)的定義,從而可以否定;對D因為值域當(dāng)中有的元素沒有原象,故可否定.故選B.4、B【解題分析】
由圓的方程求出圓心坐標(biāo)與半徑,結(jié)合題意,可得過圓心與點(1,2)的直線與直線2x﹣y=0垂直,再由斜率的關(guān)系列式求解.【題目詳解】圓C:化簡為圓心坐標(biāo)為,半徑為.如圖,由題意可得,當(dāng)弦最短時,過圓心與點(1,2)的直線與直線垂直.則,即a=1.故選:B.【題目點撥】本題考查直線與圓位置關(guān)系的應(yīng)用,考查數(shù)形結(jié)合的解題思想方法與數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.一般直線和圓的題很多情況下是利用數(shù)形結(jié)合來解決的,聯(lián)立的時候較少;在求圓上的點到直線或者定點的距離時,一般是轉(zhuǎn)化為圓心到直線或者圓心到定點的距離,再加減半徑,分別得到最大值和最小值;涉及到圓的弦長或者切線長時,經(jīng)常用到垂徑定理.5、D【解題分析】試題分析:在區(qū)間上為增函數(shù);在區(qū)間上先增后減;在區(qū)間上為增函數(shù);在區(qū)間上為減函數(shù),選D.考點:函數(shù)增減性6、C【解題分析】分析:用列舉法得出甲、乙、丙、丁四人中隨機(jī)選出人參加志愿活動的事件數(shù),從而可求甲被選中的概率.詳解:從甲、乙、丙、丁四人中隨機(jī)選出人參加志愿活動,包括:甲乙;甲丙;甲??;乙丙;乙?。槐?種情況,甲被選中的概率為.故選C.點睛:本題考查用列舉法求基本事件的概率,解題的關(guān)鍵是確定基本事件,屬于基礎(chǔ)題.7、B【解題分析】
試題分析:由題意.故選B.8、D【解題分析】
根據(jù)數(shù)列的通項公式可判斷出數(shù)列的正負(fù),然后分析的正負(fù),再由的正負(fù)即可確定出,,…,中正數(shù)的個數(shù).【題目詳解】當(dāng)時,,當(dāng)時,,因為,所以,因為,,所以取等號時,所以均為正,又因為,所以均為正,所以正數(shù)的個數(shù)是:.故選:D.【題目點撥】本題考查數(shù)列與函數(shù)綜合應(yīng)用,著重考查了推理判斷能力,難度較難.對于數(shù)列各項和的正負(fù),可通過數(shù)列本身的單調(diào)性周期性進(jìn)行判斷,從而為判斷各項和的正負(fù)做鋪墊.9、D【解題分析】
設(shè)且,半徑為,根據(jù)題意列出方程組,求得的值,即可求解.【題目詳解】依題意,圓經(jīng)過點,可設(shè)且,半徑為,則,解得,所以圓的方程為.【題目點撥】本題主要考查了圓的標(biāo)準(zhǔn)方程的求解,其中解答中熟記圓的標(biāo)準(zhǔn)方程的形式,以及合理應(yīng)用圓的性質(zhì)是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.10、A【解題分析】因為,所以,又,所以,則;因為且,所以,又,所以;則====;故選A.點睛:三角函數(shù)式的化簡要遵循“三看”原則(1)一看“角”,這是最重要的一環(huán),通過看角之間的區(qū)別和聯(lián)系,把角進(jìn)行合理的拆分,從而正確使用公式;(2)而看“函數(shù)名稱”看函數(shù)名稱之間的差異,從而確定使用公式,常見的有“切化弦”;(3)三看“結(jié)構(gòu)特征”,分析結(jié)構(gòu)特征,可以幫助我們找到變形的方向,如“遇到分式通分”等.二、填空題:本大題共6小題,每小題5分,共30分。11、4【解題分析】
將變形為,展開,利用基本不等式求最值.【題目詳解】解:,當(dāng)時等號成立,又,得,此時等號成立,故答案為:4.【題目點撥】本題考查基本不等式求最值,特別是掌握“1”的妙用,是基礎(chǔ)題.12、【解題分析】
利用數(shù)形結(jié)合,討論的范圍,比較斜率大小,可得結(jié)果.【題目詳解】如圖,當(dāng)時,,則在點處取最小值,符合當(dāng)時,令,要在點處取最小值,則當(dāng)時,要在點處取最小值,則綜上所述:故答案為:【題目點撥】本題考查目標(biāo)函數(shù)中含參數(shù)的線性規(guī)劃問題,難點在于尋找斜率之間的關(guān)系,屬中檔題.13、【解題分析】
要求兩條異面直線所成的角,需要通過見中點找中點的方法,找出邊的中點,連接出中位線,得到平行,從而得到兩條異面直線所成的角,得到角以后,再在三角形中求出角.【題目詳解】取的中點E,連AE,,易證,∴為異面直線與所成角,設(shè)等邊三角形邊長為,易算得∴在∴故答案為【題目點撥】本題考查異面直線所成的角,本題是一個典型的異面直線所成的角的問題,解答時也是應(yīng)用典型的見中點找中點的方法,注意求角的三個環(huán)節(jié),一畫,二證,三求.14、2【解題分析】
由,可求出,再由,,成等比數(shù)列,可建立關(guān)系式,求出,進(jìn)而求出即可.【題目詳解】由,可知,即,又,,成等比數(shù)列,所以,則,即,解得或,因為,所以,,所以.故答案為:2;.【題目點撥】本題考查等比數(shù)列的性質(zhì),考查等差數(shù)列前項和的求法,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.15、【解題分析】
由題意可得:該三棱錐的三條側(cè)棱兩兩垂直,長都為,所以三棱錐的體積.考點:三棱錐的體積公式.16、【解題分析】
根據(jù)正弦函數(shù)圖象的對稱性可得,由此可得答案.【題目詳解】依題意得,所以,即,因為,所以或,故答案為:【題目點撥】本題考查了正弦函數(shù)圖象的對稱軸,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解題分析】
(1)利用等差中項的性質(zhì)列方程,并轉(zhuǎn)化為的形式,由此求得的值,進(jìn)而求得數(shù)列的通項公式.(2)先求得的表達(dá)式,利用裂項求和法求得,解不等式求得的取值范圍.【題目詳解】解:(1)∵成等差數(shù)列,得,∵等比數(shù)列,且,∴解得或又,∴,∴(2)∵,∴∴故由,得.【題目點撥】本小題主要考查等差中項的性質(zhì),考查等比數(shù)列基本量的計算,考查裂項求和法,考查不等式的解法,屬于中檔題.18、(1);(2)【解題分析】
(1)根據(jù)一元二次不等式的解和對應(yīng)一元二次方程根的關(guān)系,求得的值.(2)利用一元二次不等式解集為的條件列不等式組,解不等式組求得的取值范圍.【題目詳解】(1)由于不等式的解集為或,所以,解得.(2)由于不等式的解集為,故,解得.故的取值范圍是.【題目點撥】本小題主要考查一元二次不等式的解與對應(yīng)一元二次方程根的關(guān)系,考查一元二次不等式恒成立問題的求解策略,屬于基礎(chǔ)題.19、(1);(2).【解題分析】
(1)利用正弦定理邊角互化思想,結(jié)合兩角和的正弦公式可計算出的值,結(jié)合為銳角,可得出角的值;(2)利用三角形的面積公式可求出,利用余弦定理得出,由此可得出的周長.【題目詳解】(1)依據(jù)題設(shè)條件的特點,由正弦定理,得,有,從而,解得,為銳角,因此,;(2),故,由余弦定理,即,,,故的周長為.【題目點撥】本題考查正弦定理邊角互化思想的應(yīng)用,同時也考查余弦定理和三角形面積公式解三角形,要熟悉正弦定理和余弦定理解三角形所適用的基本類型,同時在解題時充分利用邊角互化思想,可以簡化計算,考查運(yùn)算求解能力,屬于中等題.20、(1)(2)【解題分析】
利用同角三角函數(shù)基本關(guān)系式化弦為切,即可求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)村水渠建設(shè)合同范本
- 2023-2024學(xué)年人教版高中信息技術(shù)必修一第二章第三節(jié)《程序設(shè)計基本知識》教學(xué)設(shè)計
- 承包農(nóng)家果園合同范本
- 勞務(wù)住宿合同范本
- 4 公民的基本權(quán)利和義務(wù) 第3課時 國家尊重和保障人權(quán)(教學(xué)設(shè)計)2024-2025學(xué)年統(tǒng)編版道德與法治六年級上冊
- 7 什么比獵豹的速度更快 教學(xué)設(shè)計-2024-2025學(xué)年語文五年級上冊統(tǒng)編版
- 幕墻玻璃施工合同范本
- 9心中的“110”(教學(xué)設(shè)計)-部編版道德與法治三年級上冊
- 9 獵人海力布教學(xué)設(shè)計-2024-2025學(xué)年五年級上冊語文統(tǒng)編版
- Module 1 Unit 1 Food and drinks?(教學(xué)設(shè)計)-2023-2024學(xué)年牛津上海版(試用本)英語五年級下冊
- 許曉峰版電機(jī)拖動電子教案(全)課件
- 鋼鐵冶金學(xué)(煉鋼學(xué))課件
- 中醫(yī)穴位養(yǎng)生保健課件
- 塑膠件噴油作業(yè)指導(dǎo)書
- 人員安全行為觀察管理制度
- 個人簡歷及簡歷封面(簡單實用)
- 汽車運(yùn)行材料ppt課件(完整版)
- GB∕T 1732-2020 漆膜耐沖擊測定法
- 2022《化工裝置安全試車工作規(guī)范》精選ppt課件
- Q∕GDW 12067-2020 高壓電纜及通道防火技術(shù)規(guī)范
- 汽車系統(tǒng)動力學(xué)-輪胎動力學(xué)
評論
0/150
提交評論