2024屆江西省吉安市四校數(shù)學(xué)高一下期末檢測(cè)試題含解析_第1頁(yè)
2024屆江西省吉安市四校數(shù)學(xué)高一下期末檢測(cè)試題含解析_第2頁(yè)
2024屆江西省吉安市四校數(shù)學(xué)高一下期末檢測(cè)試題含解析_第3頁(yè)
2024屆江西省吉安市四校數(shù)學(xué)高一下期末檢測(cè)試題含解析_第4頁(yè)
2024屆江西省吉安市四校數(shù)學(xué)高一下期末檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆江西省吉安市四校數(shù)學(xué)高一下期末檢測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.設(shè)是同一個(gè)半徑為4的球的球面上四點(diǎn),為等邊三角形且其面積為,則三棱錐體積的最大值為A. B. C. D.2.把直線繞原點(diǎn)逆時(shí)針轉(zhuǎn)動(dòng),使它與圓相切,則直線轉(zhuǎn)動(dòng)的最小正角度().A. B. C. D.3.已知數(shù)列(,)具有性質(zhì):對(duì)任意、(),與兩數(shù)中至少有一個(gè)是該數(shù)列中的一項(xiàng),對(duì)于命題:①若數(shù)列具有性質(zhì),則;②若數(shù)列,,()具有性質(zhì),則;下列判斷正確的是()A.①和②均為真命題 B.①和②均為假命題C.①為真命題,②為假命題 D.①為假命題,②為真命題4.設(shè)變量想x、y滿足約束條件為則目標(biāo)函數(shù)的最大值為()A.0 B.-3 C.18 D.215.已知數(shù)列{an}的前n項(xiàng)和Sn=3n(λ-n)-6,若數(shù)列{an}單調(diào)遞減,則λ的取值范圍是A.(-∞,2) B.(-∞,3) C.(-∞,4) D.(-∞,5)6.設(shè)函數(shù)是上的偶函數(shù),且在上單調(diào)遞減.若,,,則,,的大小關(guān)系為()A. B. C. D.7.設(shè)定義域?yàn)榈钠婧瘮?shù)是增函數(shù),若對(duì)恒成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.8.設(shè)等比數(shù)列的公比,前n項(xiàng)和為,則()A.2 B.4 C. D.9.若、、,且,則下列不等式中一定成立的是()A. B. C. D.10.設(shè)變量滿足約束條件,則目標(biāo)函數(shù)的最小值為()A. B. C. D.2二、填空題:本大題共6小題,每小題5分,共30分。11.在區(qū)間上,與角終邊相同的角為__________.12.函數(shù)的最大值為______.13.在直角坐標(biāo)系xOy中,一單位圓的圓心的初始位置在,此時(shí)圓上一點(diǎn)P的位置在,圓在x軸上沿正向滾動(dòng).當(dāng)圓滾動(dòng)到圓心位于時(shí),的坐標(biāo)為________.14.函數(shù)在的值域是__________________.15.在等比數(shù)列中,若,則等于__________.16.在中,已知,,,則角__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.如圖,在正方體中,是的中點(diǎn),在上,且.(1)求證:平面;(2)在線段上存在一點(diǎn),,若平面,求實(shí)數(shù)的值.18.已知函數(shù)當(dāng)時(shí),求函數(shù)的最小值.19.如圖,已知等腰梯形中,是的中點(diǎn),,將沿著翻折成,使平面平面.(Ⅰ)求證:;(Ⅱ)求二面角的余弦值;(Ⅲ)在線段上是否存在點(diǎn)P,使得平面,若存在,求出的值;若不存在,說(shuō)明理由.20.已知數(shù)列滿足,.(1)求證:數(shù)列是等比數(shù)列;(2)求數(shù)列的通項(xiàng)公式.21.某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時(shí)間內(nèi)每個(gè)技工加工的合格零件數(shù),按十位數(shù)字為莖,個(gè)位數(shù)字為葉得到的莖葉圖如圖所示.已知甲、乙兩組數(shù)據(jù)的平均數(shù)都為10.(1)求的值;(2)分別求出甲、乙兩組數(shù)據(jù)的方差和,并由此分析兩組技工的加工水平;

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解題分析】

分析:作圖,D為MO與球的交點(diǎn),點(diǎn)M為三角形ABC的中心,判斷出當(dāng)平面時(shí),三棱錐體積最大,然后進(jìn)行計(jì)算可得.詳解:如圖所示,點(diǎn)M為三角形ABC的中心,E為AC中點(diǎn),當(dāng)平面時(shí),三棱錐體積最大此時(shí),,點(diǎn)M為三角形ABC的中心中,有故選B.點(diǎn)睛:本題主要考查三棱錐的外接球,考查了勾股定理,三角形的面積公式和三棱錐的體積公式,判斷出當(dāng)平面時(shí),三棱錐體積最大很關(guān)鍵,由M為三角形ABC的重心,計(jì)算得到,再由勾股定理得到OM,進(jìn)而得到結(jié)果,屬于較難題型.2、B【解題分析】

根據(jù)直線過原點(diǎn)且與圓相切,求出直線的斜率,再數(shù)形結(jié)合計(jì)算最小旋轉(zhuǎn)角?!绢}目詳解】解析:由題意,設(shè)切線為,∴.∴或.∴時(shí)轉(zhuǎn)動(dòng)最小.∴最小正角為.故選B.【題目點(diǎn)撥】本題考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題。3、A【解題分析】

本題是一種重新定義問題,要我們理解題目中所給的條件,解決后面的問題,把后面的問題挨個(gè)驗(yàn)證.【題目詳解】解:①若數(shù)列具有性質(zhì),取數(shù)列中最大項(xiàng),則與兩數(shù)中至少有一個(gè)是該數(shù)列中的一項(xiàng),而不是該數(shù)列中的項(xiàng),是該數(shù)列中的項(xiàng),又由,;故①正確;②數(shù)列,,具有性質(zhì),,與至少有一個(gè)是該數(shù)列中的一項(xiàng),且,若是該數(shù)列中的一項(xiàng),則,,易知不是該數(shù)列的項(xiàng),.若是該數(shù)列中的一項(xiàng),則或或,a、若同,b、若,則,與矛盾,c、,則,綜上.故②正確.故選:.【題目點(diǎn)撥】考查數(shù)列的綜合應(yīng)用,此題能很好的考查學(xué)生的應(yīng)用知識(shí)分析、解決問題的能力,側(cè)重于對(duì)能力的考查,屬中檔題.4、C【解題分析】

畫出可行域如下圖所示,由圖可知,目標(biāo)函數(shù)在點(diǎn)處取得最大值,且最大值為.故選C.【題目點(diǎn)撥】本小題主要考查利用線性規(guī)劃求線性目標(biāo)函數(shù)的最大值.這種類型題目的主要思路是:首先根據(jù)題目所給的約束條件,畫圖可行域;其次是求得線性目標(biāo)函數(shù)的基準(zhǔn)函數(shù);接著畫出基準(zhǔn)函數(shù)對(duì)應(yīng)的基準(zhǔn)直線;然后通過平移基準(zhǔn)直線到可行域邊界的位置;最后求出所求的最值.屬于基礎(chǔ)題.5、A【解題分析】

,,因?yàn)閱握{(diào)遞減,所以,所以,且,所以只需,,且,所以,故選A.6、B【解題分析】

根據(jù)偶函數(shù)的定義可變形,再直接比較的大小關(guān)系,即可利用函數(shù)的單調(diào)性得出,,的大小關(guān)系.【題目詳解】因?yàn)楹瘮?shù)是上的偶函數(shù),所以,而,函數(shù)在上單調(diào)遞減,所以.故選:B.【題目點(diǎn)撥】本題主要考查函數(shù)的性質(zhì)的應(yīng)用,涉及奇偶性,指數(shù)函數(shù),對(duì)數(shù)函數(shù)的單調(diào)性,以及對(duì)數(shù)的運(yùn)算性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.7、A【解題分析】

由題意可得,即為,可得恒成立,討論是否為0,結(jié)合換元法和基本不等式,可得所求范圍.【題目詳解】解:由題意可得,即為,可得恒成立,當(dāng)時(shí),上式顯然成立;當(dāng)時(shí),可得,設(shè),,可得,由,可得,可得,即,故選:A.【題目點(diǎn)撥】本題主要考查函數(shù)的奇偶性和單調(diào)性的運(yùn)用,考查不等式恒成立問題解法,注意運(yùn)用參數(shù)分離和換元法,考查化簡(jiǎn)運(yùn)算能力,屬于中檔題.8、D【解題分析】

設(shè)首項(xiàng)為,利用等比數(shù)列的求和公式與通項(xiàng)公式求解即可.【題目詳解】設(shè)首項(xiàng)為,因?yàn)榈缺葦?shù)列的公比,所以,故選:D.【題目點(diǎn)撥】本題主要考查等比數(shù)列的求和公式與通項(xiàng)公式,熟練掌握基本公式是解題的關(guān)鍵,屬于基礎(chǔ)題.9、D【解題分析】

對(duì),利用分析法證明;對(duì),不式等兩邊同時(shí)乘以一個(gè)正數(shù),不等式的方向不變,乘以0再根據(jù)不等式是否取等進(jìn)行考慮;對(duì),考慮的情況;對(duì),利用同向不等式的可乘性.【題目詳解】對(duì),,因?yàn)榇笮o(wú)法確定,故不一定成立;對(duì),當(dāng)時(shí),才能成立,故也不一定成立;對(duì),當(dāng)時(shí)不成立,故也不一定成立;對(duì),,故一定成立.故選:D.【題目點(diǎn)撥】本題考查不等式性質(zhì)的運(yùn)用,考查不等式在特殊情況下能否成立的問題,考查思維的嚴(yán)謹(jǐn)性.10、B【解題分析】

根據(jù)不等式組畫出可行域,數(shù)形結(jié)合解決問題.【題目詳解】不等式組確定的可行域如下圖所示:因?yàn)榭苫?jiǎn)為與直線平行,且其在軸的截距與成正比關(guān)系,故當(dāng)且僅當(dāng)目標(biāo)函數(shù)經(jīng)過和的交點(diǎn)時(shí),取得最小值,將點(diǎn)的坐標(biāo)代入目標(biāo)函數(shù)可得.故選:B.【題目點(diǎn)撥】本題考查常規(guī)線性規(guī)劃問題,屬基礎(chǔ)題,注意數(shù)形結(jié)合即可.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

根據(jù)與終邊相同的角可以表示為這一方法,即可得出結(jié)論.【題目詳解】因?yàn)?,所以與角終邊相同的角為.【題目點(diǎn)撥】本題考查終邊相同的角的表示方法,考查對(duì)基本概念以及基本知識(shí)的熟練程度,考查了數(shù)學(xué)運(yùn)算能力,是簡(jiǎn)單題.12、【解題分析】

設(shè),,,則,,可得,再根據(jù)正弦函數(shù)的定義域和值域,求得函數(shù)的最值.【題目詳解】解:函數(shù),設(shè),,則,,,,故當(dāng),即時(shí),函數(shù),故故答案為:;【題目點(diǎn)撥】本題主要考查求函數(shù)的值域,正弦函數(shù)的定義域和值域,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.13、【解題分析】

設(shè)滾動(dòng)后圓的圓心為C,切點(diǎn)為A,連接CP.過C作與x軸正方向平行的射線,交圓C于B(2,1),設(shè)∠BCP=θ,則根據(jù)圓的參數(shù)方程,得P的坐標(biāo)為(1+cosθ,1+sinθ),再根據(jù)圓的圓心從(0,1)滾動(dòng)到(1,1),算出,結(jié)合三角函數(shù)的誘導(dǎo)公式,化簡(jiǎn)可得P的坐標(biāo)為,即為向量的坐標(biāo).【題目詳解】設(shè)滾動(dòng)后的圓的圓心為C,切點(diǎn)為,連接CP,過C作與x軸正方向平行的射線,交圓C于,設(shè),∵C的方程為,∴根據(jù)圓的參數(shù)方程,得P的坐標(biāo)為,∵單位圓的圓心的初始位置在,圓滾動(dòng)到圓心位于,,可得,可得,,代入上面所得的式子,得到P的坐標(biāo)為,所以的坐標(biāo)是.故答案為:.【題目點(diǎn)撥】本題考查圓的參數(shù)方程,平面向量坐標(biāo)表示的應(yīng)用,解題的關(guān)鍵是根據(jù)數(shù)形結(jié)合找到變量的角度,屬于中等題.14、【解題分析】

利用反三角函數(shù)的性質(zhì)及,可得答案.【題目詳解】解:,且,,∴,故答案為:【題目點(diǎn)撥】本題主要考查反三角函數(shù)的性質(zhì),相對(duì)簡(jiǎn)單.15、【解題分析】

由等比數(shù)列的性質(zhì)可得,,代入式子中運(yùn)算即可.【題目詳解】解:在等比數(shù)列中,若故答案為:【題目點(diǎn)撥】本題考查等比數(shù)列的下標(biāo)和性質(zhì)的應(yīng)用.16、【解題分析】

先由正弦定理得到角A的大小,再由三角形內(nèi)角和為得到結(jié)果.【題目詳解】根據(jù)三角形正弦定理得到:,故得到或,因?yàn)楣实玫焦蚀鸢笧?【題目點(diǎn)撥】在解與三角形有關(guān)的問題時(shí),正弦定理、余弦定理是兩個(gè)主要依據(jù).解三角形時(shí),有時(shí)可用正弦定理,有時(shí)也可用余弦定理,應(yīng)注意用哪一個(gè)定理更方便、簡(jiǎn)捷一般來(lái)說(shuō),當(dāng)條件中同時(shí)出現(xiàn)及、時(shí),往往用余弦定理,而題設(shè)中如果邊和正弦、余弦函數(shù)交叉出現(xiàn)時(shí),往往運(yùn)用正弦定理將邊化為正弦函數(shù)再結(jié)合和、差、倍角的正余弦公式進(jìn)行解答.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17、(1)證明見解析;(2)【解題分析】

(1)分別證明與即可.(2)設(shè)平面與的交點(diǎn)為,利用線面與面面平行的判定與性質(zhì)可知只需滿足,再利用平行所得的相似三角形對(duì)應(yīng)邊成比例求解即可.【題目詳解】(1)連接.因?yàn)檎襟w,故,且,又.故平面.又平面,故.同理,,,故.又,平面.故平面.(2)設(shè)平面與的交點(diǎn)為,連接.因?yàn)?平面,,故.又,故.設(shè)正方體邊長(zhǎng)為6,則因?yàn)?故故,所以.又平面則只需即可.此時(shí)又因?yàn)?故四邊形為平行四邊形.故.此時(shí).故.故【題目點(diǎn)撥】本題主要考查了線面垂直的證明以及根據(jù)線面平行求解參數(shù)的問題,需要根據(jù)題意找到線與所證平面內(nèi)的一條直線平行,并利用平面幾何中的相似方法求解.屬于中檔題.18、當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),.【解題分析】

將函數(shù)的解析式化成二次函數(shù)的形式,然后把作為整體,并根據(jù)的取值范圍,結(jié)合求二次函數(shù)在閉區(qū)間上的最值的方法進(jìn)行求解即可.【題目詳解】由題意得.∵,∴.當(dāng),即時(shí),則當(dāng),即時(shí),函數(shù)取得最小值,且;當(dāng),即時(shí),則當(dāng),即時(shí),函數(shù)取得最小值,且;當(dāng),即時(shí),則當(dāng),函數(shù)取得最小值,且.綜上可得.【題目點(diǎn)撥】解答本題的關(guān)鍵是將問題轉(zhuǎn)化為二次函數(shù)的問題求解,求二次函數(shù)在閉區(qū)間上的最值時(shí)要結(jié)合拋物線的開口方向和對(duì)稱軸與區(qū)間的位置關(guān)系求解,體現(xiàn)了數(shù)形結(jié)合的應(yīng)用,屬于基礎(chǔ)題.19、(Ⅰ)詳見解析;(Ⅱ)二面角的余弦值為;(Ⅲ)存在點(diǎn)P,使得平面,且.【解題分析】

試題分析:(I)根據(jù)直線與平面垂直的判定定理,需證明垂直平面內(nèi)的兩條相交直線.由題意易得四邊形是菱形,所以,從而,即,進(jìn)而證得平面.(Ⅱ)由(I)可知,、、兩兩互相垂直,故可以為軸,為軸,為軸建立空間直角坐標(biāo)系,利用空間向量即可求得二面角的余弦值.(Ⅲ)根據(jù)直線與平面平行的判定定理,只要能找到一點(diǎn)P使得PM平行平面內(nèi)的一條直線即可.由于,故可取線段中點(diǎn)P,中點(diǎn)Q,連結(jié).則,且.由此即可得四邊形是平行四邊形,從而問題得證.試題解析:(I)由題意可知四邊形是平行四邊形,所以,故.又因?yàn)?,M為AE的中點(diǎn)所以,即又因?yàn)?,所以四邊形是平行四邊形.所以故.因?yàn)槠矫嫫矫?,平面平面,平面所以平面.因?yàn)槠矫?,所以.因?yàn)?,、平面,所以平面.(Ⅱ)以為軸,為軸,為軸建立空間直角坐標(biāo)系,則,,,.平面的法向量為.設(shè)平面的法向量為,因?yàn)?,,,令得,.所以,因?yàn)槎娼菫殇J角,所以二面角的余弦值為.(Ⅲ)存在點(diǎn)P,使得平面.法一:取線段中點(diǎn)P,中點(diǎn)Q,連結(jié).則,且.又因?yàn)樗倪呅问瞧叫兴倪呅?,所以.因?yàn)闉榈闹悬c(diǎn),則.所以四邊形是平行四邊形,則.又因?yàn)槠矫?,所以平面.所以在線段上存在點(diǎn),使得平面,.法二:設(shè)在線段上存在點(diǎn),使得平面,設(shè),(),,因?yàn)椋裕驗(yàn)槠矫?,所以,所以,解得,又因?yàn)槠矫?,所以在線段上存在點(diǎn),使得平面,.考點(diǎn):1、空間直線與平面的位置關(guān)系;2、二面角.20、(1)證明見解析;(2).【解題分析】

(1)利用數(shù)列的遞推公式證明出為非零常數(shù),即可證明出數(shù)列是等比數(shù)列;(2)確定等比數(shù)列的首項(xiàng)和公比,求出數(shù)列的通項(xiàng)公式,即可求出.【題目詳解】(1),,因此,數(shù)列是等比數(shù)列;(2)由于,所以,數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,,因此,.【題目點(diǎn)撥】本題考查等比數(shù)列的證明,同時(shí)也考查了數(shù)列通項(xiàng)的求解,考查推理能力與計(jì)算能力,屬于中等題.2

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論