




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
MicrosoftNew
FutureofWork
Report2023
Asummaryofrecentresearchfrom
Microsoftandaroundtheworldthat
canhelpuscreateanewandbetter
futureofworkwithAI.
2
MicrosoftNewFutureofWorkReport
aka.ms/nfw
EditorsandAuthors
?Editors:
JennaButler
(PrincipalAppliedResearchScientist),
SoniaJaffe
(PrincipalResearcher),
NancyBaym
(SeniorPrincipalResearchManager),
MaryCzerwinski
(PartnerResearchManager),
ShamsiIqbal
(PrincipalApplied&DataScientist),
Kate
Nowak
(PrincipalAppliedScientist),
SeanRintel
(SeniorPrincipalResearcher),
AbigailSellen
(VPDistinguishedScientist),Mihaela
Vorvoreanu(DirectorAetherUXResearch&EDU),
BrentHecht
(PartnerDirectorofAppliedScience),and
JaimeTeevan
(Chief
ScientistandTechnicalFellow)
?Authors:NajeebAbdulhamid,JudithAmores,ReidAndersen,KagonyaAwori,MaxamedAxmed,danahboyd,JamesBrand,GeorgBuscher,DeanCarignan,MartinChan,AdamColeman,ScottCounts,MadeleineDaepp,AdamFourney,DanGoldstein,Andy
Gordon,AaronHalfaker,JavierHernandez,JakeHofman,JennyLay-Flurrie,VeraLiao,SianLindley,SathishManivannan,CharltonMcilwain,SubigyaNepal,JenniferNeville,StephanieNyairo,JackiO'Neill,VictorPoznanski,GonzaloRamos,NaguRangan,LaceyRosedale,DavidRothschild,TaraSafavi,AdvaitSarkar,AvaScott,ChiragShah,NehaShah,TenyShapiro,RylandShaw,Auste
Simkute,JinaSuh,SiddharthSuri,IoanaTanase,LevTankelevitch,MengtingWan,RyenWhite,LongqiYang
Referencingthisreport:
?Onsocialmedia,pleaseincludethereportURL(
https://aka.ms/nfw2023
).
?Inacademicpublications,pleaseciteas:Butler,J.,Jaffe,S.,Baym,N.,Czerwinski,M.,Iqbal,S.,Nowak,K.,Rintel,R.,Sellen,A.,
Vorvoreanu,M.,Hecht,B.,andTeevan,J.(Eds.).MicrosoftNewFutureofWorkReport2023.MicrosoftResearchTechReportMSR-TR-2023-34(
https://aka.ms/nfw2023
),2023.
3
MicrosoftNewFutureofWorkReport
aka.ms/nfw
Welcometothe2023MicrosoftNewFutureofWorkReport!
Inthepastthreeyears,therehavebeennotonebuttwogenerationalshiftsinhowworkgetsdone,bothofwhichwereonly
possiblebecauseofdecadesofresearchanddevelopment.ThefirstshiftoccurredwhenCOVIDmadeusrealizehowpowerfulremoteandhybridworktechnologieshadbecome,aswellashowmuchsciencewasavailabletoguideusinhowto(andhownotto)usethesetechnologies.Thesecondarrivedthisyear,asitbecameclearthat,atlonglast,generativeAIhadadvancedtothepointwhereitcouldbevaluabletohugeswathsoftheworkpeopledoeveryday.
WebegantheNewFutureofWorkReportseries
in2021
,attheheightoftheshifttoremotework.Thegoalofthatreportwastoprovideasynthesisofnew–andnewlyrelevant–researchtoanyoneinterestedinreimaginingworkforthebetterasa
decades-oldapproachtoworkwaschallenged.ThesecondNewFutureofWorkReport,published
in2022
,focusedonhybridworkandwhatresearchcouldteachusaboutintentionallyre-introducingco-locationintopeople’sworkpractices.Thisyear’sedition,thethirdintheseries,continueswiththesamegoal,butcentersonresearchrelatedtointegratingLLMsintowork.
Throughout2023,AIandthefutureofworkhavefrequentlybeenonthemetaphorical–andoftenliteral–frontpagearoundtheworld.TherehavebeenmanyexcellentarticlesaboutthewaysinwhichworkmaychangeasLLMsareincreasingly
integratedintoourlives.Assuch,inthisyear’sreportwefocusspecificallyonareasthatwethinkdeserveadditionalattentionorwherethereisresearchthathasbeendoneatMicrosoftthatoffersauniqueperspective.Thisisareportthatshouldbereadasacomplementtotheexistingliterature,ratherthanasasynthesisofallofit.
Thisisararetime,oneinwhichresearchwillplayaparticularlyimportantroleindefiningwhatthefutureofworklookslike.Atthisspecialmoment,scientistscan’tjustbepassiveobserversofwhatishappening.Rather,wehavetheresponsibilitytoshapeworkforthebetter.Wehopethisreportcanhelpourcolleaguesaroundworldmakeprogresstowardsthisgoal.
-JaimeTeevan,ChiefScientistandTechnicalFellow
4
MicrosoftNewFutureofWorkReport
aka.ms/nfw
ThisreportemergesfromMicrosoft’sNewFutureofWorkinitiative
Microsofthashelpedshapeinformationworksinceitsfounding.However,aconfluenceofrecentcircumstances–remotework,
hybridwork,LLMs–havecreatedanunprecedentedopportunity
forthecompanytoreimaginehowAIandotherdigitaltechnologiescanmakeworkbetterforeveryone.
Sinceitsinception,theNewFutureofWork(NFW)initiativehasbroughttogetherresearchersfromabroadrangeof
organizationsanddisciplinesacrossMicrosofttofocusonthe
mostimportanttechnologiesshapinghowpeoplework.The
initiativeisworkingtocreatethenewfutureofwork–onethatisequitable,inclusive,meaningful,andproductive–insteadof
predictingorwaitingforit.Itdoesthisbyconductingprimary
researchandsynthesizingexistingresearchtosharewiththeresearchcommunity.Thisreportisoneofthemanypublic
resourcesithasproduced.
ThereadercanfindtheNewFutureofWorkinitiative’smany
otherresearchpapers,practicalguides,reportsandwhitepapersattheinitiative’swebsite:
https://aka.ms/nfw
.
https://aka.ms/nfw
MicrosoftNewFutureofWorkReport
aka.ms/nfw
Reportoverview
ThisreportprovidesinsightintoAIandworkpractices.Inityouwillfindcontentrelatedto:
?LLMsforInformationWork:HowdoLLMsaffectthespeedandqualityofcommoninformationworktasks?LLMscanboostproductivityforinformationworkers,buttheyalsorequirecarefulevaluationandadaptation.
?LLMsforCriticalThinking:HowcanLLMshelpusbreakdownandbuildupcomplextasks?LLMscanhelpustacklecomplextasksbyprovokingcriticalthinking,enablingmicroproductivity,andshiftingthebalanceofskills.
?Human-AICollaboration:HowcanwecollaborateeffectivelywithLLMs?EffectivecollaborationwithLLMsdependsonhowweprompt,complement,relyon,andauditthem.
?LLMsforComplexandCreativeTasks:HowcanLLMstackletasksthatgobeyondsimpleinformationretrievalorgeneration?LLMscansupportcomplexandcreativetasksby,forinstance,enhancingmetacognition.
?Domain-SpecificApplicationsofLLMs:HowareLLMsbeingusedandaffectingdifferentdomainsofwork?Wefocusspecificsonsoftwareengineering,medicine,socialscience,andeducation.
?LLMsforTeamCollaborationandCommunication:HowcanLLMshelpteamsworkandcommunicatebetter?LLMscanhelpteamsimproveinteraction,coordination,andworkflowsbyprovidingreal-time,retrospectivefeedbackandleveragingholisticframeworks.
?KnowledgeManagementandOrganizationalChanges:HowisAIchangingthenatureanddistributionofknowledgeinorganizations?LLMsmight,forinstance,finallyeliminateknowledgesilosinlargecompanies.
?ImplicationsforFutureWorkandSociety:WhatimplicationswillAIhaveforthefutureofworkandsociety?WecanshapeAI’simpactbyaddressingadoptiondisparities,fosteringinnovation,leadinglikescientists,andrememberingthatthefutureofworkisinourcontrol.
MicrosoftNewFutureofWorkReport
aka.ms/nfw
LabexperimentsshowLLMscansubstantiallyimproveproductivityon
commoninformationworktasks,althoughtherearesomequalifiers
LLM-basedtoolscanhelpworkerscompleteavarietyoftasksmorequicklyandincreaseoutputquality.
?StudieshavefoundthatpeoplecompletesimulatedinformationworktasksmuchfasterandwithahigherqualityofoutputwhenusinggenerativeAI-basedtools,
?Peopletook37%lesstimeoncommonwritingtasks(NoyandZhang2023)
?BCGconsultantsproduced>40%higherqualityononesimulatedconsultingproject(Dell’Acquaetal.2023).
?Userswerealso2xfasteratsolvingsimulateddecision-makingproblemswhenusingLLM-basedsearchovertraditionalsearch(Spathariotietal.2023).
?Forsometasks,increasedspeedcancomewithmoderatelylowercorrectness.
?WhentheLLMmademistakes,BCGconsultantswithaccesstothetoolwere19percentagepointsmorelikelytoproduceincorrectsolutions(Dell’Acquaetal.2023).
?Spathariotietal.(2023)developasimpleUX-basedinterventionscanworkwellathelpingpeoplenavigatethesetradeoffs.
?Usersmayneedhelpnegotiatingthetradeoffsinvolvedtomaximizeproductivitygains
?Howtask-levelgainstranslatetojob-levelgainswilldependonwhether
gainsextendtoothertasksandhowthetoolsareintegratedintoworkflows
Qualityofoutput(Treated=usingChatGPT)(Noy&Zhang2023)
Estimatesandconfidenceintervalsforaveragelog(time)bycondition,(Spathariotietal.2023)
Dell’Acqua,F.,etal.(2023).
NavigatingtheJaggedTechnologicalFrontier:FieldExperimentalEvidenceoftheEffectsofAIonKnowledgeWorkerProductivityandQuality
.SSRNWorkingPaper4573321.Noy,S.,&Zhang,W.(2023).
ExperimentalEvidenceontheProductivityEffectsofGenerativeArtificialIntelligence
.SSRNpreprint.
MicrosoftStudy:Spatharioti,S.E.,etal.(2023).
ComparingTraditionalandLLM-basedSearchforConsumerChoice:ARandomizedExperiment
.arXivpreprint.
6
TaskcompletiontimesforlabstudiesofCopilotforM365(Cambonetal2023)
MicrosoftNewFutureofWorkReport
aka.ms/nfw
CopilotforM365savestimeforavarietyoftasksinlabstudiesandsurveys
UsersalsoreportCopilotreducestheeffortrequired.Effectsonqualityaremostlyneutral
Microsoft’sAIandProductivityReportsynthesizesresultsfrom8earlystudies,mostfocusedontheuseofM365Copilot
forinformationworkertasksforwhichLLMsaremostlikelytoprovidesignificantvalue(Cambonetal.,2023).
?Tasksincludedmeetingsummarization,informationretrieval,andcontentcreation
?StudyparticipantswithCopilotcompletedexperimenter-designedtasksin26-73%asmuchtimeasthosewithoutCopilot
?AsurveyofenterpriseuserswithaccesstoCopilotalsoshowedsubstantialperceivedtimesavings
?73%agreedthatCopilothelpedthemcompletetasksfaster,and85%saiditwouldhelpthemgettoagoodfirstdraftfaster.
?Manystudiesfoundnostatisticallysignificantormeaningfuleffectonquality
?However,inthemeetingsummarizationstudywhereCopilotuserstookmuchlesstime,theirsummaries
included11.1outof15specificpiecesofinformationintheassessmentrubricversusthe12.4of15foruserswhodidnothaveaccesstoCopilot.
?Intheotherdirection,thestudyofM365DefenderSecurityCopilotfoundsecuritynoviceswithCopilotwere44%moreaccurateinansweringquestionsaboutthesecurityincidentstheyexamined.
?AstudyoftheOutlook“Soundlikeme”featurefoundCopilotuserslikemanyaspectsoftheemailsitgeneratedmorethanhuman-writtenones,butcouldsometimestellthedifferencebetweenCopilotwritingversushumanwriting.
?OfenterpriseCopilotusers,68%ofrespondentsagreedthatCopilotactuallyimprovedqualityoftheirwork.
?UsersalsoreportedtasksrequiredlesseffortwithCopilot
?IntheTeamsMeetingStudy,participantswithaccesstoCopilotfoundthetasktobe58%lessdrainingthanparticipantswithoutaccess
?AmongenterpriseCopilotusers,72%agreedthatCopilothelpedthemspendlessmentaleffortonmundaneorrepetitivetasks
7
MicrosoftStudy:Cambonetal(2023),
EarlyLLM-basedToolsforEnterpriseInformationWorkersLikelyProvideMeaningfulBooststoProductivity
.MSFTTechnicalReport.
MicrosoftNewFutureofWorkReport
aka.ms/nfw
TheevidencepointstoLLMshelpingtheleastexperiencedthemost
Mostlyearlystudieshavefoundthatneworlow-skilledworkersbenefitthemostfromLLMs.
?InstudyingthestaggeredrolloutofagenerativeAI-basedconversational
assistant,Brynjolfssonetal.(2023)foundthatthetoolhelpednoviceandlow-skilledworkersthemost.
?Theyfoundsuggestiveevidencethatthetoolhelpeddisseminatetacitknowledgethattheexperiencedandhigh-skilledworkersalreadyhad.
?Inalabexperiment,participantswhoscoredpoorlyontheirfirstwritingtask
improvedmorewhengivenaccesstoChatGPTthanthosewithhighscoresontheinitialtask(seegraph,NoyandZhang2023).
?Pengetal.(2023)alsofoundsuggestiveevidencethatGithubCopilotwasmorehelpfultodeveloperswithlessexperience.
?InanexperimentwithBCGemployeescompletingaconsultingtask,thebottom-halfofsubjectsintermsofskillsbenefitedthemost,showinga43%improvementinperformance,comparedtothetophalfwhoseperformanceincreasedby17%(Dell’Acquaetal.,2023).
?RecentworkbyHaslbergeretal.(2023)highlightssomecomplexitiesandnuanceinthesetrends,includingcasesinwhichLLMsmightincreaseperformance
disparities.
GreentrianglesrepresentthosewhogotaccesstoChatGPTforthesecondtask.Theirscoresacrossthetwotasksareless
correlated.(Noy&Zhang2023)
Brynjolfsson,E.,etal.(2023).
GenerativeAIatWork
.NBERWorkingPaper31161.
Haslberger,M.etal.(2023)
NoGreatEqualizer:ExperimentalEvidenceonAIintheUKLaborMarket
.SSRNWorkingPaper4594466,
8
Dell’Acqua,F.,etal.(2023).
NavigatingtheJaggedTechnologicalFrontier:FieldExperimentalEvidenceoftheEffectsofAIonKnowledgeWorkerProductivityandQuality
.SSRNWorkingPaper4573321.Noy,S.,&Zhang,W.(2023).
ExperimentalEvidenceontheProductivityEffectsofGenerativeArtificialIntelligence
.SSRNWorkingPaper4375283.
MicrosoftStudy:Peng,S.,etal.(2023).
TheImpactofAIonDeveloperProductivity:EvidencefromGitHubCopilot
.arXivpreprint2302.06590.
MicrosoftNewFutureofWorkReport
aka.ms/nfw
Criticalthinking:LLM-basedtoolscanbeusefulprovocateurs
ReconceptualizingAIsystemsas“provocateurs”inadditionto“assistants”canpromotecriticalthinking
inknowledgework
?AsAIisappliedtomoregenerativetasks,humanworkisshiftingto“criticalintegration”ofAIoutput,requiringexpertiseandjudgement(Sarkar2023).
?Movingbeyondjusterrorcorrection,AIprovocateurswouldchallengeassumptions,encourageevaluation,andoffercounterarguments.
?InteractiondesignofprovocativeAIneedstostrikeabalancebetweenusefulcriticismandoverwhelmingpeople.
?Frameworksthatstructurecriticalthinkingobjectives(e.g.,Bloom’s
taxonomy)andToulmin’smodeloperationalizeargumentanalysis,whichcouldinformprovocativeAIdesign(Kneupper1978).
?Interactivetechnologiesthatsparkdiscussionandengageuserscontributetocriticalthinkingdevelopment(Sunetal.2017;Leeetal.2023).
ImageofBloom’sTaxonomy(Bezjak,S.,etal.2018)
MicrosoftStudy:Sarkar,A.(2023).
ExploringPerspectivesontheImpactofArtificialIntelligenceontheCreativityofKnowledgeWork:BeyondMechanisedPlagiarismandStochasticParrots
ProceedingsoftheACMSymposiumonHuman-ComputerInteractionforWork(CHIWORK2023).
Kneupper,C.W.(1978).Teachingargument:AnintroductiontotheToulminmodel.CollegeCompositionandCommunication29,3..
9
Sun,N.,etal.(2017).Criticalthinkingincollaboration:Talkless,perceivemore.Proceedingsofthe2017CHIConferenceExtendedAbstractsonHumanFactorsinComputingSystems.
Lee,S.,etal.(2023).FosteringYouth’sCriticalThinkingCompetencyAboutAIthroughExhibition.Proceedingsofthe2023CHIConferenceonHumanFactorsinComputingSystems.
Bezjak,S.etal,(2018).
OpenScienceTrainingHandbook
MicrosoftNewFutureofWorkReport
aka.ms/nfw
AIcanenhancemicroproductivitypractices
AIcanbeharnessedtoaugmenthumancapabilitiesthroughnoveltaskmanagementstrategies
?Theconceptof“microproductivity”,inwhichcomplextasksaredecomposedintosmallersubtasksand
performedin“micromoments”bythepersonmostskilledtodoso,canbeenhancedthroughautomation(Teevan2016).
?Forexample,Kokkalisetal.(2013)demonstratedthathighleveltasksbrokenintomultistepactionplansthroughcrowdsourcingresultinpeoplecompletingsignificantlymoretasks(47.1%task
completion)comparedtothecontrolconditionofnoplans(37.8%).ThesebenefitswerescaledbyapplyingNLPalgorithmstoautomaticallycreateactionplansforalargervarietyoftasksbasedonatrainingsetofsimilartasks,andtheplanswerefurtherrefinedthroughhumanintervention.
?Kauretal.(2018)showedthatusingafixedvocabularytobreakdowncommentsinadocumentintoaseriesofsubtasksresultedina28%increaseinsubtasksthatcanbehandedofftocrowdsourcingorautomation,leavingasmallerpercentageofsubtasksleftforthedocumentauthor.
?AIcanhelpwithautomaticidentificationofmicromomentsandmicrotasks,improvingoverallqualityandefficiency.
?Contextualidentificationofmicromomentsbasedonprecedingactivitiesandlocationcanyieldupto80.7%precision(Kangetal.2017);suchmicromomentscanbeusedforlearning(Caietal.2017),
creationofaudiobooks(Kangetal.2017),editingdocuments(Augustetal.2020),andcoding(Williamsetal.2018).
?Whiteetal.(2021)demonstratedhowmachinelearningcanbeleveragedtoautomaticallydetectmicrotasksfromuser-generatedtasklistsresultinginapositiveprecisionof75%,andforecast
duration,withthebestclassifierperformancefortaskswithdurationof5minutes.
Decomposinghighleveltasksintoconcretesteps(plans)makesthemmoreactionableresultinginhighertaskcompletionrates.Online
crowdsdothedecomposition,algorithmsidentifyandreuseexistingplans.(Kokkalis2013)
MicrosoftStudy:Teevan,J.(2016).
Thefutureofmicrowork
.XRDS23,2.
Kokkalis,N.,etal.2013.TaskGenies:
AutomaticallyProvidingActionPlansHelpsPeopleCompleteTasks
.ACMTransactionsonComputer-HumanInteraction20,5.
Kaur,H.etal.2018.
CreatingBetterActionPlansforWritingTasksviaVocabulary-BasedPlanning
.ProceedingsoftheACMonHuman-ComputerInteraction.2,CSCW.
Kang,B.etal.(2017).Zaturi:
WePutTogetherthe25thHourforYou.CreateaBookforYourBaby
.InProceedingsofthe2017ACMConferenceonComputerSupportedCooperativeWorkandSocialComputing(CSCW‘17).Cai,C.J.,Ren,A.,&Miller,R.C.(2017).
WaitSuite:ProductiveUseofDiverseWaitingMoments
.ACMTransactionsonComputerHumanInteraction24,1.
10
MicrosoftStudy:August,T.,etal.(2020).
CharacterizingtheMobileMicrotaskWritingProcess
.22ndInternationalConferenceonHuman-ComputerInteractionwithMobileDevicesandServices(MobileHCI‘20).
MicrosoftStudy:Williams,A.,(2019).
Mercury:EmpoweringProgrammers'MobileWorkPracticeswithMicroproductivity
.Proceedingsofthe32ndAnnualACMSymposiumonUserInterfaceSoftwareandTechnology
MicrosoftStudy:White,R.W.,etal.(2021).
MicrotaskDetection.
ACMTrans.Inf.Syst.39,2.
MicrosoftNewFutureofWorkReport
aka.ms/nfw
Analyzingandintegratingmaybecomemoreimportantskillsthansearchingandcreating
WithcontentbeinggeneratedbyAI,knowledgeworkmayshifttowardsmoreanalysisandcriticalintegration
?Informationsearchaswellascontentproduction(manuallytyping,writingcode,designingimages)isgreatlyenhancedbyAI,sogeneralinformationworkmayshifttointegratingandcriticallyanalyzingretrievedinformation
?WritingwithAIisshowntoincreasetheamountoftextproducedaswellastoincreasewritingefficiency(Biermannetal.2022,Leeetal2022)
?Withmoregeneratedtextavailable,theskillsofresearch,
conceptualization,planning,promptingandeditingmaytakeonmore
importanceasLLMsdothefirstroundofproduction(e.g.,Mollick2023).
?Skillsnotdirectlytocontentproduction,suchasleading,dealingwithcriticalsocialsituations,navigatinginterpersonaltrustissues,and
demonstratingemotionalintelligence,mayallbemorevaluedintheworkplace(LinkedIn2023)
Thecriticalintegration“sandwich”:whenAIhandlesproduction,humancritical
thinkingisappliedateitherendoftheprocesstocompleteknowledge
workflows(Sarkar,2023).
Biermann,O.C.,etal.(2022).
FromTooltoCompanion:StorywritersWantAIWriterstoRespectTheirPersonalValuesandWritingStrategies
.Proceedingsofthe2022ACMDesigningInteractiveSystemsConference(DIS'22).Mina,L.,etal.(2022).
CoAuthor:DesigningaHuman-AICollaborativeWritingDatasetforExploringLanguageModelCapabilities
.Proceedingsofthe2022CHIConferenceonHumanFactorsinComputingSystems(CHI'22).
11
Mollick,E.(2023).
MyclassrequiredAI.Here'swhatI'velearnedsofar
.OneUsefulThing
LinkedIn(2023).
FutureofWorkReport:AIatWork
.
MicrosoftNewFutureofWorkReport
aka.ms/nfw
Constructingoptimalpromptsisdifficult
Promptsaretheprimaryinterfaceforbothusersanddeveloperstointeractwithlargelanguagemodels,butconsistentlydevelopingeffectivepromptsisachallenge
?PrecisepromptcompositioniscriticalinachievingthedesiredLLMoutput,withsemanticallysimilarpromptsyieldingsignificantlydifferent,sometimesincorrect,outputs(Jiangetal2020).
?Writingeffectivepromptscanrequiresignificanteffort,includingmultipleiterationsofmodificationandtesting(Jiangetal2022).
?Promptbehaviorcanbebrittleandnon-intuitive:
?Seeminglyminorchanges,includingcapitalizationandspacingcanresultindramaticallydifferentLLMoutputs(Holtzman2021,Aroraetal.2023)
?Theorderofpromptelements,suchassections,few-shotexamplesorevenwordscansignificantlyimpactaccuracy,insomecasesvaryingfromnearrandomchancetostate-of-the-art(Zhaoetal.2021,Kaddouretal.2023).
?Thesamepromptcanresultinsignificantlydifferentperformanceacrossmodelfamilies,evenwithmodelsofsimilarparametersize(Sanhetal.2022).
?Whilemanypromptingtechniqueshavebeendeveloped,thereislittletheoreticalunderstandingforwhyanyparticulartechniqueissuitedtoanyparticulartask(Zhaoetal.2021).
?Endusersofprompt-basedapplicationsstrugglemorethanpromptengineerstoformulateeffectiveprompts(Zamfirescu-Pereiraetal.2023).
Jiang,Z.etal.(2020).
HowCanWeKnowWhatLanguageModelsKnow?
TransactionsoftheAssociationforComputationalLinguistics,8.
Jiang,E.etal.(2022).
PromptMaker:Prompt-basedPrototypingwithLargeLanguageModels
.ExtendedAbstractsofthe2022CHIConferenceonHumanFactorsinComputingSystems
Holtzman,A.etal.(2021).SurfaceFormCompetition:WhytheHighestProbabilityAnswerIsn’tAlwaysRight.EMNLP.
Arora,S.etal.(2023).
Askmeanything:Asimplestrategyforpromptinglanguagemodels
.TheEleventhInternationalConferenceonLearningRepresentations.
Zhao,Z.,etal.(2021).
CalibrateBeforeUse:ImprovingFew-shotPerformanceofLanguageModels
.Proceedingsofthe38thInternationalConferenceonMachineLearning.
Kaddour,J.,etal.(2023).
ChallengesandApplicationsofLargeLanguageModels
.arXivpreprint.
12
Sanh,V.etal.(2022)
MultitaskPromptedTrainingEnablesZero-ShotTaskGeneralization
.InternationalConferenceonLearningRepresentations
Zamfirescu-Pereira,J.D.,etal.(2023).
WhyJohnnyCan’tPrompt:HowNon-AIExpertsTry(andFail)toDesignLLMPrompts
.(CHI'23).
MicrosoftNewFutureofWorkReport
aka.ms/nfw
Butconstructingeffectivepromptsisbecomingeasier
Basemodeltraining,toolsandLLMsthemselvesarehelpingimprovepromptperformance
?Significantresearchisdevotedtoimprovingmodelinstructionfollowing.
?Fine-tuningwithhumanfeedbackcandramaticallyimproveLLMsabilitytofollowpromptinstructions,evenwhencomparedtomodelswith100xparameters(Ouyangetal.2022).
?Utilizingmulti-taskandchain-of-thoughttrainingdatasignificantlyimprovedinstruction-followingcapabilities(Chungetal.2022).
?LLMshavebeenshowntobeeffectivepromptoptimizers.
?PromptoptimizationtechniquesthatutilizeanLLMtoiterativelyprovidefeedbackandproducenewversionsofahand-craftedseedpromptcansignificantlyimproveperformance(Pryzantetal.2023).
?Multi-stepoptimizationwithnaturallanguagetaskdescriptionsandscoredoptimizationexamplescaninduceanLLMtogeneratenew,higherperformingpromptvariations(Yangetal.2023).
?Inspiredbyevolutionaryalgorithms,anLLMcanbeusedtogeneratenewpromptcandidatesbymutatingpromptsfromapopulation,evaluatingtheirfitnessagainstatestsetovermultiplegenerations(Fernandoetal.2023).
?Recentworksuggestsoptimizedpromptscanoutperformspecificallyfine-tunedmodelsinanumberofimportantdomains,especiallymedicine(Norietal.2023).
Ouyang,L.,etal.(2022).Traininglanguagemodelstofollowinstructionswithhumanfeedback.AdvancesinNeuralInformationProcessingSystems,35.
Chung,H.W.,etal.(2023)
Scalinginstruction-finetunedlanguagemodels
.arXivpreprint.
Pryzant,R.,etal.(2023).
AutomaticPromptOptimizationwithGradientDescentandBeamSearch
.arXivpreprint.
Yang,C.,etal.(2023).
Largelanguagemodelsasoptimizers
.arXivpreprint.
13
Nori,Harsha,etal.
CanGeneralistFoundationModelsOutcompeteSpecial-PurposeTuning?CaseStudyinMedicine
arXivpreprint.
Fernando,C.,etal.(2023).
Promptbreeder:Self-referentialself-improvementviapromptevolution
.arXivpreprint.
MicrosoftNewFutureofWorkReport
aka.ms/nfw
Peoplearealsolearningtopromptmoreeffectively
AspeoplegetbetteratcommunicatingwithLLMs,theyaregettingbetterresults
?Promptguidanceiscommonlyusedasawayforpeopletolearntopromptbetter.
?ResearchsuggeststhattrainingonhowtopromptcanleadtogreaterproductivitygainsfromLLMtools(Dell’Acquaetal.2023).
?Usingalensinformedbythepsycholinguisticconceptofgrounding(Clark1996),Teevan(2023)arguesinHBRthateffectivecommunicationwithgenerativeAIrequiresprovidingcontextualinformation,specifyingthedesiredoutput,andverifyingtheaccuracyofthegeneratedcontent.
?Manyotherguidesandreferencematerialsarealsoavailable,includingarecentWorkLabarticle(Microsoft2023)andOpenAI’sdocumentation
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 治理早婚早育協(xié)議書
- 直播行業(yè)合伙協(xié)議書
- 委托律師付款協(xié)議書
- 學(xué)位租憑協(xié)議書范本
- 物流賠償協(xié)議書范本
- 貨物欠款清賬協(xié)議書
- 水庫出租轉(zhuǎn)讓協(xié)議書
- 空調(diào)線路改造協(xié)議書
- 銷售人員保密協(xié)議書
- 圖書約稿協(xié)議書范本
- 初中道德與法治八年級第四課書面作業(yè)設(shè)計樣例(第3-4周)
- 2019年企業(yè)所得稅匯算清繳審核及2020年稅務(wù)咨詢等服務(wù)招標(biāo)文件【模板】
- DB43∕T 571-2010 安化黑茶 湘尖茶
- 《檢驗檢測機構(gòu)監(jiān)督管理辦法》培訓(xùn)結(jié)業(yè)考核試題附答案
- 基于SolidWorks球閥參數(shù)化設(shè)計
- 初中綜合實踐課程標(biāo)準(zhǔn)
- 基于STC89C52單片機-紅外智能循跡小車
- 重慶森林工程林業(yè)項目營造林檢查驗收辦法(試行)
- 市政工程施工質(zhì)量檢查表
- 懸臂模板多卡模板施工手冊
- 談文旅融合發(fā)展的深層意義
評論
0/150
提交評論