




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆寧夏銀川市西夏區(qū)育才中學(xué)數(shù)學(xué)高一第二學(xué)期期末經(jīng)典模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.黃金分割比是指將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,其比值為,約為0.618,這一比值也可以表示為a=2cos72°,則=()A. B.1 C.2 D.2.若,且,則下列不等式一定成立的是()A. B.C. D.3.點,,直線與線段相交,則實數(shù)的取值范圍是()A. B.或C. D.或4.已知函數(shù),若實數(shù)滿足,則的取值范圍是()A. B. C. D.5.已知函數(shù),其圖像相鄰的兩個對稱中心之間的距離為,且有一條對稱軸為直線,則下列判斷正確的是()A.函數(shù)的最小正周期為B.函數(shù)的圖象關(guān)于直線對稱C.函數(shù)在區(qū)間上單調(diào)遞增D.函數(shù)的圖像關(guān)于點對稱6.已知某運動員每次投籃命中的概率都為40%.現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器算出0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):907966191925271932812458569683431257393027556488730113537989據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為()A.0.35 B.0.25 C.0.20 D.0.157.已知x,x134781016y57810131519則線性回歸方程y=A.(8,10) B.(8,11) C.(7,10) D.(7,11)8.設(shè)、滿足約束條件,則的最大值為()A. B.C. D.9.已知圓:及直線:,當(dāng)直線被截得的弦長為時,則等于()A. B. C. D.10.設(shè)函數(shù)的圖象分別向左平移m(m>0)個單位,向右平移n(n>0>個單位,所得到的兩個圖象都與函數(shù)的圖象重合的最小值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.用數(shù)學(xué)歸納法證明不等式“(且)”的過程中,第一步:當(dāng)時,不等式左邊應(yīng)等于__________。12.若角是第四象限角,則角的終邊在_____________13.已知向量,,若與的夾角是銳角,則實數(shù)的取值范圍為______.14.在等差數(shù)列中,,,則公差______.15.若直線y=x+m與曲線x=恰有一個公共點,則實數(shù)m的取值范圍是______.16.若是方程的解,其中,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.為了解學(xué)生的學(xué)習(xí)情況,某學(xué)校在一次考試中隨機抽取了20名學(xué)生的成績,分成[50,60),[60,70),[70,80),[80,90),[90,100]五組,繪制了如圖所示頻率分布直方圖.求:(Ⅰ)圖中m的值;(II)估計全年級本次考試的平均分;(III)若從樣本中隨機抽取分數(shù)在[80,100]的學(xué)生兩名,求所抽取兩人至少有一人分數(shù)不低于90分的概率.18.已知集合,數(shù)列的首項,且當(dāng)時,點,數(shù)列滿足.(1)試判斷數(shù)列是否是等差數(shù)列,并說明理由;(2)若,求的值.19.已知:,,,,求的值.20.若,解關(guān)于的不等式.21.如圖,在三棱錐A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點E,F(xiàn)(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.求證:(1)EF∥平面ABC;(2)AD⊥AC.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】
根據(jù)已知利用同角三角函數(shù)基本關(guān)系式,二倍角公式、誘導(dǎo)公式化簡即可求值得解.【題目詳解】∵a=2cos72°,∴a2=4cos272°,可得:4﹣a2=4﹣4cos272°=4sin272°,∴2sin72°,a2cos72°?2sin72°=2sin144°=2sin36°,∴.故選:A.【題目點撥】本題主要考查了同角三角函數(shù)基本關(guān)系式,二倍角公式、誘導(dǎo)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.2、B【解題分析】
根據(jù)不等式性質(zhì)確定選項.【題目詳解】當(dāng)時,不成立;因為,所以;當(dāng)時,不成立;當(dāng)時,不成立;所以選B.【題目點撥】本題考查不等式性質(zhì),考查基本分析判斷能力,屬基礎(chǔ)題.3、B【解題分析】
根據(jù),在直線異側(cè)或其中一點在直線上列不等式求解即可.【題目詳解】因為直線與線段相交,所以,,在直線異側(cè)或其中一點在直線上,所以,解得或,故選B.【題目點撥】本題主要考查點與直線的位置關(guān)系,考查了一元二次不等式的解法,屬于基礎(chǔ)題.4、B【解題分析】
求出函數(shù)的定義域,分析函數(shù)的單調(diào)性與奇偶性,將所求不等式變形為,然后利用函數(shù)的單調(diào)性與定義域可得出關(guān)于實數(shù)的不等式組,即可解得實數(shù)的取值范圍.【題目詳解】對于函數(shù),有,解得,則函數(shù)的定義域為,定義域關(guān)于原點對稱,,所以,函數(shù)為奇函數(shù),由于函數(shù)在區(qū)間上為增函數(shù),函數(shù)在區(qū)間上為減函數(shù),所以,函數(shù)在上為增函數(shù),由得,所以,,解得.因此,實數(shù)的取值范圍是.故選:B.【題目點撥】本題考查函數(shù)不等式的求解,解答的關(guān)鍵就是分析函數(shù)的單調(diào)性和奇偶性,考查計算能力,屬于中等題.5、C【解題分析】
本題首先可根據(jù)相鄰的兩個對稱中心之間的距離為來確定的值,然后根據(jù)直線是對稱軸以及即可確定的值,解出函數(shù)的解析式之后,通過三角函數(shù)的性質(zhì)求出最小正周期、對稱軸、單調(diào)遞增區(qū)間以及對稱中心,即可得出結(jié)果.【題目詳解】圖像相鄰的兩個對稱中心之間的距離為,即函數(shù)的周期為,由得,所以,又是一條對稱軸,所以,,得,又,得,所以.最小正周期,項錯誤;令,,得對稱軸方程為,,選項錯誤;由,,得單調(diào)遞增區(qū)間為,,項中的區(qū)間對應(yīng),故正確;由,,得對稱中心的坐標(biāo)為,,選項錯誤,綜上所述,故選C.【題目點撥】本題考查根據(jù)三角函數(shù)圖像性質(zhì)來求三角函數(shù)解析式以及根據(jù)三角函數(shù)解析式得出三角函數(shù)的相關(guān)性質(zhì),考查對函數(shù)的相關(guān)性質(zhì)的理解,考查推理能力,是中檔題.6、B【解題分析】
已知三次投籃共有20種,再得到恰有兩次命中的事件的種數(shù),然后利用古典概型的概率公式求解.【題目詳解】三次投籃共有20種,恰有兩次命中的事件有:191,271,932,812,393,有5種∴該運動員三次投籃恰有兩次命中的概率為故選:B【題目點撥】本題主要考古典概型的概率求法,還考查了運算求解的能力,屬于基礎(chǔ)題.7、D【解題分析】
先計算x,【題目詳解】x=線性回歸方程y=a+故答案選D【題目點撥】本題考查了回歸方程,回歸方程一定過數(shù)據(jù)中心點.8、C【解題分析】
作出不等式組所表示的可行域,平移直線,觀察直線在軸上的截距最大時對應(yīng)的最優(yōu)解,再將最優(yōu)解代入目標(biāo)函數(shù)可得出結(jié)果.【題目詳解】作出不等式組所表示的可行域如下圖中的陰影部分區(qū)域表示:聯(lián)立,得,可得點的坐標(biāo)為.平移直線,當(dāng)該直線經(jīng)過可行域的頂點時,直線在軸上的截距最大,此時取最大值,即,故選:C.【題目點撥】本題考查簡單線性規(guī)劃問題,一般作出可行域,利用平移直線結(jié)合在坐標(biāo)軸上的截距取最值來取得,考查數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.9、C【解題分析】
求出圓心到直線的距離,由垂徑定理計算弦長可解得.【題目詳解】由題意,圓心為,半徑為2,圓心到直線的距離為,所以,解得.故選:C.【題目點撥】本題考查直線與圓相交弦長問題,解題方法由垂徑定理得垂直,由勾股定理列式計算.10、C【解題分析】
求出函數(shù)的圖象分別向左平移個單位,向右平移個單位后的函數(shù)解析式,再根據(jù)其圖象與函數(shù)的圖象重合,可分別得關(guān)于,的方程,解之即可.【題目詳解】解:將函數(shù)的圖象向左平移個單位,得函數(shù),其圖象與的圖象重合,,,,故,,,當(dāng)時,取得最小值為.將函數(shù)的圖象向右平移個單位,得到函數(shù),其圖象與的圖象重合,,,,故,,當(dāng)時,取得最小值為,的最小值為,故答案為:.【題目點撥】本題主要考查誘導(dǎo)公式,函數(shù)的圖象變換規(guī)律,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
用數(shù)學(xué)歸納法證明不等式(且),第一步,即時,分母從3到6,列出式子,得到答案.【題目詳解】用數(shù)學(xué)歸納法證明不等式(且),第一步,時,左邊式子中每項的分母從3開始增大至6,所以應(yīng)是.即為答案.【題目點撥】本題考查數(shù)學(xué)歸納法的基本步驟,屬于簡單題.12、第二或第四象限【解題分析】
根據(jù)角是第四象限角,寫出角的范圍,即可求出角的終邊所在位置.【題目詳解】因為角是第四象限角,所以,即有,當(dāng)為偶數(shù)時,角的終邊在第四象限;當(dāng)為奇數(shù)時,角的終邊在第二象限,故角的終邊在第二或第四象限.【題目點撥】本題主要考查象限角的集合的應(yīng)用.13、【解題分析】
先求出與的坐標(biāo),再根據(jù)與夾角是銳角,則它們的數(shù)量積為正值,且它們不共線,求出實數(shù)的取值范圍,.【題目詳解】向量,,,,若與的夾角是銳角,則與不共線,且它們乘積為正值,即,且,求得,且.【題目點撥】本題主要考查利用向量的數(shù)量積解決向量夾角有關(guān)的問題,以及數(shù)量積的坐標(biāo)表示,向量平行的條件等.條件的等價轉(zhuǎn)化是解題的關(guān)鍵.14、3【解題分析】
根據(jù)等差數(shù)列公差性質(zhì)列式得結(jié)果.【題目詳解】因為,,所以.【題目點撥】本題考查等差數(shù)列公差,考查基本分析求解能力,屬基礎(chǔ)題.15、{m|-1<m≤1或m=-}【解題分析】
由x=,化簡得x2+y2=1,注意到x≥0,所以這個曲線應(yīng)該是半徑為1,圓心是(0,0)的半圓,且其圖象只在一、四象限.畫出圖象,這樣因為直線與其只有一個交點,由此能求出實數(shù)m的取值范圍.【題目詳解】由x=,化簡得x2+y2=1,注意到x≥0,所以這個曲線應(yīng)該是半徑為1,圓心是(0,0)的半圓,且其圖象只在一、四象限.畫出圖象,這樣因為直線與其只有一個交點,從圖上看出其三個極端情況分別是:①直線在第四象限與曲線相切,②交曲線于(0,﹣1)和另一個點,③與曲線交于點(0,1).直線在第四象限與曲線相切時解得m=﹣,當(dāng)直線y=x+m經(jīng)過點(0,1)時,m=1.當(dāng)直線y=x+m經(jīng)過點(0,﹣1)時,m=﹣1,所以此時﹣1<m≤1.綜上滿足只有一個公共點的實數(shù)m的取值范圍是:﹣1<m≤1或m=﹣.故答案為:{m|-1<m≤1或m=-}.【題目點撥】本題考查實數(shù)的取值范圍的求法,是中檔題,解題時要認真審題,注意數(shù)形結(jié)合思想的合理運用.16、或【解題分析】
將代入方程,化簡結(jié)合余弦函數(shù)的性質(zhì)即可求解.【題目詳解】由題意可得:,即所以或又所以或故答案為:或【題目點撥】本題主要考查了三角函數(shù)求值問題,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(I)0.045;(II)75;(III)0.7【解題分析】
(Ⅰ)根據(jù)頻率之和為1,結(jié)合題中數(shù)據(jù),即可求出結(jié)果;(II)每組的中間值乘以該組頻率,再求和,即可得出結(jié)果;(III)用列舉法列舉出總的基本事件,以及滿足條件的基本事件,基本事件的個數(shù)比即為所求的概率.【題目詳解】(Ⅰ)由題意可得:(Ⅱ)各組的頻率分別為0.05,0.25,0.45,0.15,0.1,所以可估計全年級的平均分為;(Ⅲ)分數(shù)落在[80,90)的人數(shù)有3人,設(shè)為a,b,c,落在[90,100的人數(shù)有2人,設(shè)為A、B,則從中隨機抽取兩名的結(jié)果有{ab},(ac},{a4},(aB},{bc},(bA},(bB),{cA},{cB),{AB}共10種,其中至少有一人不低于90分的有7種,故概率為0.7.【題目點撥】本題主要考查由頻率分布直方圖求參數(shù),以及求均值的問題,同時考查古典概型的問題,熟記古典概型的概率公式,以及均值的求法即可,屬于??碱}型.18、(1)是;(2).【解題分析】
(1)依據(jù)題意,寫出遞推式,由等差數(shù)列得定義即可判斷;(2)求出,利用極限知識,求出,即可求得的值?!绢}目詳解】(1)當(dāng)時,點,所以,即由得,當(dāng)時,,將代入,,故數(shù)列是以為公差的等差數(shù)列。(2)因為,所以,,由得,,,故,?!绢}目點撥】本題主要考查等差數(shù)列的定義和通項公式的運用,以及數(shù)列極限的運算。19、【解題分析】
先由同角三角函數(shù)的平方關(guān)系求出,,然后結(jié)合兩角和的余弦公式求解即可.【題目詳解】解:由,,,,所以,,則.【題目點撥】本題考查了同角三角函數(shù)的平方關(guān)系,重點考查了兩角和的余弦公式,屬基礎(chǔ)題.20、當(dāng)0<a<1時,原不等式的解集為,當(dāng)a<0時,原不等式的解集為;當(dāng)a=0時,原不等式的解集為?.【解題分析】
試題分析:(1),利用,可得,分三種情況對討論的范圍:0<a<1,a<0,a=0,分別求得相應(yīng)情況下的解集即可.試題解析:不等式>1可化為>0.因為a<1,所以a-1<0,故原不等式可化為<0.故當(dāng)0<a<1時,原不等式的解集為,當(dāng)a<0時,原不等式的解集為,當(dāng)a=0時,原不等式的解集為?.21、(1)見解析(2)見解析【解題分析】試題分析:(1)先由平面幾何知識證明,再由線面平行判定定理得結(jié)論;(2)先由面面垂直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 反恐教育主題班會教案
- 教學(xué)實施與反饋改進計劃
- 公司生產(chǎn)工作計劃升級生產(chǎn)設(shè)備
- 藝術(shù)教育與科學(xué)教育的結(jié)合計劃
- 幼兒園游戲化學(xué)習(xí)活動安排計劃
- 幼兒園師徒結(jié)對幫扶方案計劃
- 秋季海量閱讀與寫作提升方案計劃
- 運營成本優(yōu)化策略計劃
- 注冊會計師各科目考點解知試題及答案
- 2024年投資市場環(huán)境分析試題及答案
- 消防安全隱患排查試題及答案
- 2024年食品安全法管理知識試題庫(含答案)
- 2025廣西文化產(chǎn)業(yè)集團招聘174人易考易錯模擬試題(共500題)試卷后附參考答案
- 宿舍管理考試試題及答案
- 2025年鄭州鐵路職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性考試題庫附答案
- 2025福建德化閩投抽水蓄能有限公司招聘15人筆試參考題庫附帶答案詳解
- 智能財稅綜合實訓(xùn) 上篇 課件 社會共享初級代理實務(wù)
- 2025年長春醫(yī)學(xué)高等??茖W(xué)校單招職業(yè)適應(yīng)性考試題庫參考答案
- 2024-2030全球細胞治療制造平臺行業(yè)調(diào)研及趨勢分析報告
- 湖南省長沙市雨花區(qū)長沙市華益中學(xué)2024-2025學(xué)年九年級下學(xué)期開學(xué)考試英語試題(含答案無聽力原文及音頻)
- 術(shù)后譫妄的預(yù)防與護理
評論
0/150
提交評論