版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆山西省平遙縣和誠高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知關(guān)于的不等式的解集為,則的值為()A.4 B.5 C.7 D.92.?dāng)S一枚均勻的硬幣,如果連續(xù)拋擲2020次,那么拋擲第2019次時(shí)出現(xiàn)正面向上的概率是()A. B. C. D.3.已知基本單位向量,,則的值為()A.1 B.5 C.7 D.254.已知且,則的取值范圍是()A. B. C. D.5.不等式x2+ax+4>0對(duì)任意實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍為()A.(﹣4,4) B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,+∞) D.6.已知兩條不重合的直線和,兩個(gè)不重合的平面和,下列四個(gè)說法:①若,,,則;②若,,則;③若,,,,則;④若,,,,則.其中所有正確的序號(hào)為()A.②④ B.③④ C.④ D.①③7.有一塔形幾何體由若干個(gè)正方體構(gòu)成,構(gòu)成方式如圖所示,上層正方體下底面的四個(gè)頂點(diǎn)是下層正方體上底面各邊的中點(diǎn).已知最底層正方體的棱長為2,且該塔形的表面積(含最底層正方體的底面面積)超過39,則該塔形中正方體的個(gè)數(shù)至少是A.4 B.5 C.6 D.78.在中,角,,所對(duì)的邊分別為,,,,的平分線交于點(diǎn),且,則的最小值為()A.8 B.9 C.10 D.79.設(shè),若,則數(shù)列是()A.遞增數(shù)列 B.遞減數(shù)列C.奇數(shù)項(xiàng)遞增,偶數(shù)項(xiàng)遞減的數(shù)列 D.偶數(shù)項(xiàng)遞增,奇數(shù)項(xiàng)遞減的數(shù)列10.已知,則的值為A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知等差數(shù)列的前項(xiàng)和為,若,則_______.12.如圖,在三棱錐中,它的每個(gè)面都是全等的正三角形,是棱上的動(dòng)點(diǎn),設(shè),分別記與,所成角為,,則的取值范圍為__________.13.已知直線平面,,那么在平面內(nèi)過點(diǎn)P與直線m平行的直線有________條.14.甲、乙兩名射擊運(yùn)動(dòng)員進(jìn)行射擊比賽,甲的中靶概率為0.8,乙的中靶概率為0.7,現(xiàn)兩人各自獨(dú)立射擊一次,均中靶的概率為______.15.設(shè)是公差不為0的等差數(shù)列,且成等比數(shù)列,則的前10項(xiàng)和________.16.計(jì)算:______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)為等差數(shù)列的前項(xiàng)和,已知,.(1)求數(shù)列的通項(xiàng)公式;(2)令,且數(shù)列的前項(xiàng)和為,求證:.18.如圖,在三棱錐A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點(diǎn)E,F(xiàn)(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.求證:(1)EF∥平面ABC;(2)AD⊥AC.19.在平面直角坐標(biāo)系中,已知點(diǎn),,坐標(biāo)分別為,,,為線段上一點(diǎn),直線與軸負(fù)半軸交于點(diǎn),直線與交于點(diǎn).(1)當(dāng)點(diǎn)坐標(biāo)為時(shí),求直線的方程;(2)求與面積之和的最小值.20.(Ⅰ)已知直線過點(diǎn)且與直線垂直,求直線的方程;(Ⅱ)求與直線的距離為的直線方程.21.如圖,邊長為2的正方形中.(1)點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn),將、分別沿,折起,使,兩點(diǎn)重合于點(diǎn),求證:;(2)當(dāng)時(shí),將、分別沿,折起,使,兩點(diǎn)重合于點(diǎn),求三棱錐的體積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解題分析】
將原不等式化簡后,根據(jù)不等式的解集列方程組,求得的值,進(jìn)而求得的值.【題目詳解】由得,依題意上述不等式的解集為,故,解得(舍去),故.故選:D.【題目點(diǎn)撥】本小題主要考查類似:已知一元二次不等式解集求參數(shù),考查函數(shù)與方程的思想,屬于基礎(chǔ)題.2、B【解題分析】
根據(jù)概率的性質(zhì)直接得到答案.【題目詳解】根據(jù)概率的性質(zhì)知:每次正面向上的概率為.故選:.【題目點(diǎn)撥】本題考查了概率的性質(zhì),屬于簡單題.3、B【解題分析】
計(jì)算出向量的坐標(biāo),再利用向量的求模公式計(jì)算出的值.【題目詳解】由題意可得,因此,,故選B.【題目點(diǎn)撥】本題考查向量模的計(jì)算,解題的關(guān)鍵就是求出向量的坐標(biāo),并利用坐標(biāo)求出向量的模,考查運(yùn)算求解能力,屬于基礎(chǔ)題.4、A【解題分析】分析:,由,可得,又,可得,化簡整理即可得出.詳解:,由,可得,又,可得,化為,解得,則的取值范圍是.故選:A.點(diǎn)睛:本題考查了基本不等式的性質(zhì)、一元二次不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.5、A【解題分析】
根據(jù)二次函數(shù)的性質(zhì)求解.【題目詳解】不等式x2+ax+4>0對(duì)任意實(shí)數(shù)x恒成立,則,∴.故選A.【題目點(diǎn)撥】本題考查一元二次不等式恒成立問題,解題時(shí)可借助二次函數(shù)的圖象求解.6、C【解題分析】
根據(jù)線面平行,面面平行,線面垂直,面面垂直的性質(zhì)定理,判定定理等有關(guān)結(jié)論,逐項(xiàng)判斷出各項(xiàng)的真假,即可求出.【題目詳解】對(duì)①,若,,,則或和相交,所以①錯(cuò)誤;對(duì)②,若,,則或,所以②錯(cuò)誤;對(duì)③,根據(jù)面面平行的判定定理可知,只有,,,,且和相交,則,所以③錯(cuò)誤;對(duì)④,根據(jù)面面垂直的性質(zhì)定理可知,④正確.故選:C.【題目點(diǎn)撥】本題主要考查有關(guān)線面平行,面面平行,線面垂直,面面垂直的命題的判斷,意在考查線面平行,面面平行,線面垂直,面面垂直的性質(zhì)定理,判定定理等有關(guān)結(jié)論的理解和應(yīng)用,屬于基礎(chǔ)題.7、C【解題分析】
根據(jù)相鄰正方體的關(guān)系得出個(gè)正方體的棱長為等比數(shù)列,求出塔形表面積的通項(xiàng)公式,令,即可得出的范圍.【題目詳解】設(shè)從最底層開始的第層的正方體棱長為,則是以2為首項(xiàng),以為公比的等比數(shù)列.∴是以4為首項(xiàng),以為公比的等比數(shù)列∴塔形的表面積為.令,解得.∴塔形正方體最少為6個(gè).故選C.【題目點(diǎn)撥】此題考查了立體圖形的表面積問題以及等比數(shù)列求和公式的應(yīng)用.解決本題的關(guān)鍵是得到上下正方體的棱長之間的關(guān)系,從而即可得出依次排列的正方體的一個(gè)面的面積,這里還要注意把最下面的正方體看做是6個(gè)面之外,上面的正方體都是露出了4個(gè)面.8、B【解題分析】
根據(jù)三角形的面積公式,建立關(guān)于的關(guān)系式,結(jié)合基本不等式,利用1的代換,即可求解,得到答案.【題目詳解】由題意,因?yàn)?,的平分線交于點(diǎn),且,所以,整理得,得,則,當(dāng)且僅當(dāng),即,所以的最小值9,故選B.【題目點(diǎn)撥】本題主要考查了基本不等式的應(yīng)用,其中合理利用1的代換,結(jié)合基本不等式求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.9、C【解題分析】
根據(jù)題意,由三角函數(shù)的性質(zhì)分析可得,進(jìn)而可得函數(shù)為減函數(shù),結(jié)合函數(shù)與數(shù)列的關(guān)系分析可得答案?!绢}目詳解】根據(jù)題意,,則,指數(shù)函數(shù)為減函數(shù)即即即即,數(shù)列是奇數(shù)項(xiàng)遞增,偶數(shù)項(xiàng)遞減的數(shù)列,故選:C.【題目點(diǎn)撥】本題涉及數(shù)列的函數(shù)特性,利用函數(shù)單調(diào)性,通過函數(shù)的大小,反推變量的大小,是一道中檔題目。10、B【解題分析】
利用誘導(dǎo)公式求得tanα,再利用同角三角函數(shù)的基本關(guān)系求得要求式子的值.【題目詳解】∵已知tanα,∴tanα,則,故選B.【題目點(diǎn)撥】本題主要考查應(yīng)用誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
先由題意,得到,求出,再由等差數(shù)列的性質(zhì),即可得出結(jié)果.【題目詳解】因?yàn)榈炔顢?shù)列的前項(xiàng)和為,若,則,所以,因此.故答案為:【題目點(diǎn)撥】本題主要考查等差數(shù)列的性質(zhì)的應(yīng)用,熟記等差數(shù)列的求和公式,以及等差數(shù)列的性質(zhì)即可,屬于??碱}型.12、【解題分析】
作交于,連接,可得是與所成的角根據(jù)等腰三角形的性質(zhì),作交于,同理可得,根據(jù),的關(guān)系即可得解.【題目詳解】解:作交于,連接,因?yàn)槿忮F中,它的每個(gè)面都是全等的正三角形,為正三角形,,,是與所成的角,根據(jù)等腰三角形的性質(zhì).作交于,同理可得,則,∵,∴,得.故答案為:【題目點(diǎn)撥】本題考查異面直線所成的角,屬于中檔題.13、1【解題分析】
利用線面平行的性質(zhì)定理來進(jìn)行解答.【題目詳解】過直線與點(diǎn)可確定一個(gè)平面,由于為公共點(diǎn),所以兩平面相交,不妨設(shè)交線為,因?yàn)橹本€平面,所以,其它過點(diǎn)的直線都與相交,所以與也不會(huì)平行,所以過點(diǎn)且平行于的直線只有一條,在平面內(nèi),故答案為:1.【題目點(diǎn)撥】本題考查線面平行的性質(zhì)定理,是基礎(chǔ)題.14、0.56【解題分析】
根據(jù)在一次射擊中,甲、乙同時(shí)射中目標(biāo)是相互獨(dú)立的,利用相互獨(dú)立事件的概率乘法公式,即可求解.【題目詳解】由題意,甲的中靶概率為0.8,乙的中靶概率為0.7,所以兩人均中靶的概率為,故答案為0.56【題目點(diǎn)撥】本題主要考查了相互獨(dú)立事件的概率乘法公式的應(yīng)用,其中解答中合理利用相互獨(dú)立的概率乘法公式求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.15、【解題分析】
利用等差數(shù)列的通項(xiàng)公式和等比數(shù)列的性質(zhì)求出公差,由此能求出【題目詳解】因?yàn)槭枪畈粸?的等差數(shù)列,且成等比數(shù)列所以,即解得或(舍)所以故答案為:【題目點(diǎn)撥】本題考查等差數(shù)列前10項(xiàng)和的求法,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)合理運(yùn)用.16、【解題分析】
在分式的分子和分母中同時(shí)除以,然后利用常見的數(shù)列極限可計(jì)算出所求極限值.【題目詳解】.故答案為:.【題目點(diǎn)撥】本題考查數(shù)列極限的計(jì)算,熟悉一些常見數(shù)列極限是解題的關(guān)鍵,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)見解析【解題分析】
(1)根據(jù)等差數(shù)列的通項(xiàng)公式得到結(jié)果;(2)根據(jù)第一問得到,由裂項(xiàng)求和得到結(jié)果.【題目詳解】(1)設(shè)等差數(shù)列的公差為,由題意得,,解得,,則,.(2)由得∴.【題目點(diǎn)撥】這個(gè)題目考查的是數(shù)列通項(xiàng)公式的求法及數(shù)列求和的常用方法;數(shù)列通項(xiàng)的求法中有常見的已知和的關(guān)系,求表達(dá)式,一般是寫出做差得通項(xiàng),但是這種方法需要檢驗(yàn)n=1時(shí)通項(xiàng)公式是否適用;數(shù)列求和常用法有:錯(cuò)位相減,裂項(xiàng)求和,分組求和等。18、(1)見解析(2)見解析【解題分析】試題分析:(1)先由平面幾何知識(shí)證明,再由線面平行判定定理得結(jié)論;(2)先由面面垂直性質(zhì)定理得平面,則,再由AB⊥AD及線面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC.試題解析:證明:(1)在平面內(nèi),因?yàn)锳B⊥AD,,所以.又因?yàn)槠矫鍭BC,平面ABC,所以EF∥平面ABC.(2)因?yàn)槠矫鍭BD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以平面.因?yàn)槠矫?,所?又AB⊥AD,,平面ABC,平面ABC,所以AD⊥平面ABC,又因?yàn)锳C平面ABC,所以AD⊥AC.點(diǎn)睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型:(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.19、(1);(2).【解題分析】
(1)求出的直線方程后可得的坐標(biāo),再求出的直線方程和的直線方程后可得的坐標(biāo),從而得到直線的直線方程.(2)直線的方程為,設(shè),求出的直線方程后可得的坐標(biāo),從而可用表示,換元后利用基本不等式可求的最小值.【題目詳解】(1)當(dāng)時(shí),直線的方程為,所以,直線的方程為①,又直線的方程為②,①②聯(lián)立方程組得,所以直線的方程為.(2)直線的方程為,設(shè),直線的方程為,所以.因?yàn)樵谳S負(fù)半軸上,所以,=,.令,則,(當(dāng)且僅當(dāng)),而當(dāng)時(shí),,故的最小值為.【題目點(diǎn)撥】直線方程有五種形式,常用的形式有點(diǎn)斜式、斜截式、截距式、一般式,垂直于的軸的直線沒有點(diǎn)斜式、斜截式和截距式,垂直于軸的直線沒有截距式,注意根據(jù)題設(shè)所給的條件選擇合適的方程的形式.直線方程中的最值問題,注意可選擇合適的變量(如斜率、傾斜角、動(dòng)點(diǎn)的橫坐標(biāo)或縱坐標(biāo)等)構(gòu)建目標(biāo)函數(shù),再利用基本不等式或函數(shù)的單調(diào)性等求目標(biāo)函數(shù)的最值.20、(Ⅰ);(Ⅱ)或.【解題分析】
(Ⅰ)根據(jù)直線與直線垂直,求得直線的斜率為,再利用直線的點(diǎn)斜式方程,即可求解;(Ⅱ)設(shè)所求直線方程為,由點(diǎn)到直線的距離公式,列出方程,求得的值,即可得到答案.【題目詳解】(Ⅰ)由題意,設(shè)所求直線的斜率為,由直線的斜率為,因?yàn)橹本€與直線垂直,所以直線的斜率為,所以所求直線的方程為直線的方程為:,即.(Ⅱ)設(shè)所求直線方程為,即,直線上任取一點(diǎn),由點(diǎn)到直線的距離公式,可得,解得或-4,所以所求直線方程為:或.【題目點(diǎn)撥】本題主要考查了直線方程的求解,兩直線的位置關(guān)系的應(yīng)用,以及點(diǎn)到直線的距離公式的應(yīng)用,著重考查了推
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版?zhèn)€人房產(chǎn)抵押貸款資產(chǎn)重組服務(wù)合同3篇
- 2025-2030年中國3D液晶顯示器(裸眼及非裸眼)規(guī)模分析及投資前景規(guī)劃研究報(bào)告
- 二零二五年新型建筑建材供銷合作協(xié)議書
- 2024年滬教版選擇性必修3生物下冊(cè)階段測(cè)試試卷
- 2025年華師大版必修1化學(xué)下冊(cè)階段測(cè)試試卷
- 2025年滬科新版九年級(jí)數(shù)學(xué)下冊(cè)月考試卷含答案
- 2025年度股權(quán)投資合同投資金額和股權(quán)分配3篇
- 人教版八年級(jí)數(shù)學(xué)下冊(cè)《19.2.3一次函數(shù)與方程、不等式》同步測(cè)試題含答案
- 2025年外研版三年級(jí)語文上冊(cè)階段測(cè)試試卷含答案
- 2024年盆栽購入合同模板
- 網(wǎng)絡(luò)安全日志關(guān)聯(lián)分析-洞察分析
- 醫(yī)療美容服務(wù)風(fēng)險(xiǎn)免責(zé)協(xié)議書
- 2025年度宏泰集團(tuán)應(yīng)屆高校畢業(yè)生夏季招聘【6080人】高頻重點(diǎn)提升(共500題)附帶答案詳解
- 課題申報(bào)書:大中小學(xué)鑄牢中華民族共同體意識(shí)教育一體化研究
- 巖土工程勘察課件0巖土工程勘察
- 《腎上腺腫瘤》課件
- 2024-2030年中國典當(dāng)行業(yè)發(fā)展前景預(yù)測(cè)及融資策略分析報(bào)告
- 《乘用車越野性能主觀評(píng)價(jià)方法》
- 幼師個(gè)人成長發(fā)展規(guī)劃
- 2024-2025學(xué)年北師大版高二上學(xué)期期末英語試題及解答參考
- 批發(fā)面包采購合同范本
評(píng)論
0/150
提交評(píng)論