


下載本文檔
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
kummer判別法的證明
Kummer'stheoremisanimportantresultinnumbertheoryandalgebrawhichprovidesacriterionfordeterminingwhetheragivenprimepdividesthebinomialcoefficientC(n,m)forfixedintegersnandm.ThetheoremwasfirstintroducedbyErnstEduardKummerinthemid-19thcentury.Inthisproof,wewillnotuseanylinkstoexternalsourcesbutwillusethenotationcommonlyusedinnumbertheory.
Tobegin,let'sstateKummer'stheoremforbinomialcoefficients:
Kummer'sTheorem:Letpbeaprimeandn,mbenon-negativeintegers.Then,thelargestpowerofpthatdividesC(n,m)isgivenbythenumberofcarriesthatoccurwhenaddingnand(n-m)inbasep.
Now,let'sprovideanoutlineoftheproof:
1.First,weneedtounderstandthenotionofacarryinbasepaddition.Whenaddingtwonumbersinbasep,acarryoccurswheneverthesumoftwodigitsatthesameplacevaluepositionexceedsp-1.Forexample,whenadding12and17inbase10,thereisacarryinthetensplace,resultinginthesum2carry1.Wewillusethisconcepttocountthenumberofcarriesintheadditionofnand(n-m)inbasep.
2.AsthebinomialcoefficientC(n,m)representsthenumberofwaystochooseasubsetofsizemfromasetofsizen,itcanalsobeexpressedcombinatoriallyasC(n,m)=n!/(m!*(n-m)!).Notethattheprimepdividesafactork!forany0<k<pifandonlyifkisamultipleofp.Thisisbecausewhencalculatingthefactorial,theprimepwillappearasafactorineverymultipleofp.ThisobservationwillhelpusdeterminethepowerofpdividingthefactorialsinC(n,m).
3.Werewriten!/(m!*(n-m)!)as(n*(n-1)*...*(n-m+1))/(m*(m-1)*...*1)andanalyzeeachfactorindividually.Let'sintroducethenotationv_p(x)todenotethelargestpowerofpthatdividesx.Wewanttofindv_p(C(n,m)).
4.Weobservethateachfactorinthenumerator,(n*(n-1)*...*(n-m+1)),isdivisiblebypifandonlyifitisamultipleofp,i.e.,ifv_p(n*(n-1)*...*(n-m+1))>0.Similarly,eachfactorinthedenominator,(m*(m-1)*...*1),isdivisiblebypifandonlyifitisamultipleofp,whichoccurswhenv_p(m*(m-1)*...*1)>0.
5.Usingtheconceptofcarries,wecanrewrite(n*(n-1)*...*(n-m+1))asthesumofmterms,whereeachtermrepresentstheproductofmintegerschosenfromn,(n-1),...,(n-m+1).Ifwecalculatethesumoftheseterms(withoutcarryinganydigits)inbasep,weobtainthenumeratorofC(n,m).Similarly,wecanrewrite(m*(m-1)*...*1)asthesumofmtermsinbasep,representingthedenominatorofC(n,m).
6.ThenumberofcarriesthatoccurwhenaddingthenumeratoranddenominatorinbasepisdirectlyrelatedtothepowerofpthatdividesC(n,m).Specifically,thelargestpowerofpthatdividesC(n,m)isequaltothenumberofcarriesthatoccurwhenaddingthenumeratoranddenominatorinbasep.
7.Bycountingthenumberofcarries,wecandeterminewhetherpdividesC(n,m)ornot.Ifthenumberofcarriesisgreaterthanzero,thenpdividesC(n,m).Otherwise,pdoesnotdivideC(n,m).
Inconclusion,wehaveoutlinedtheproofofKummer'stheoremforbinomialcoefficients.Byanalyzingthenumberofcarriesthatoccurwhenaddingthenumeratoranddenomin
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 內(nèi)外架合同范例
- 化肥合作合同范例
- 專(zhuān)項(xiàng)經(jīng)理聘用合同范本
- 農(nóng)業(yè)購(gòu)貨合同范本
- 化工產(chǎn)品購(gòu)銷(xiāo)服務(wù)合同范本
- 醫(yī)院購(gòu)銷(xiāo)合同范本
- 出口布料銷(xiāo)售合同范例
- 養(yǎng)殖水車(chē)出租合同范例
- 農(nóng)村田租合同范本
- cpc廣告合同范本
- 美團(tuán)外賣(mài)騎手服務(wù)合同(2025年度)
- 應(yīng)急預(yù)案解讀與實(shí)施
- 2025年春季學(xué)期團(tuán)委工作安排表
- 2025年《國(guó)有企業(yè)領(lǐng)導(dǎo)人員腐敗案例剖析》心得體會(huì)樣本(3篇)
- 廣告行業(yè)安全培訓(xùn)詳細(xì)介紹
- 2024-2029年全球及中國(guó)氨能源(綠氨)應(yīng)用可行性研究與投資戰(zhàn)略規(guī)劃分析報(bào)告
- 2025福南平市建武夷水務(wù)發(fā)展限公司招聘21人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年上半年工業(yè)和信息化部裝備工業(yè)發(fā)展中心應(yīng)屆畢業(yè)生招聘(第二批)易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2025年中遠(yuǎn)海運(yùn)物流有限公司招聘筆試參考題庫(kù)含答案解析
- 2024年廣州市海珠區(qū)衛(wèi)生健康系統(tǒng)招聘事業(yè)單位工作人員筆試真題
- 一科一品一骨科護(hù)理
評(píng)論
0/150
提交評(píng)論