




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
WhitePaperAccrual
Modeling
AndAdaptive
Trial
MonitoringWith
IQV
IA
Trial
DesignerIVETA
JAN?IGOVá,MSc,
PhD,ComputationalScientist,
IQVIAERIC
GROVES,MD,PhD,Vice
PresidentofStrategicDrug
DevelopmentforR&D
Solutions,
IQVIATable
of
contentsAbstract12IntroductionIQVIA
Trial
Designer3Dose-escalation3Adaptive
group-sequential
designsSpendingfunctions44Samplesizere-estimation5AccrualmodellingandtrialmonitoringTechnicalspeci?cations56Case
study:AdaptivedesignwithaccrualmonitoringSpendingfunction
approachEarly
stoppingfore?cacy777Early
stoppingforfutility9Samplesizere-estimation
approachModellingaccrual91010111215151516ScenarioI:
Direct
accrualcalculationvs
simulationresultsScenarioII:
MultiplesitesScenarioIII:
Piece-wise
recruitment
rates-patientaccrualmonitoringScenarioIV:
Piece-wise
hazardrates-events
accrualmonitoringConclusionAcknowledgementsReferencesAbstractAdaptive
clinicaltrialdesignscan
be
used
toaddressthe
issueofe?ect
sizenotbeingwellde?ned
beforethe
trialfornew
therapeutics.
When
these
types
oftrialdesignsarecombinedwith
modelsandsimulationsfortheaccrualprocess,
it
ispossibletopredict
thedevelopmentofrecruitment
andendpointcollectionandadjust
strategy
based
oninterimanalysisresults.To
showcasethe
group-sequential
moduleandthe
use
ofaccrualsimulations,inthispaperweconsideranexamplewith
adaptivedesignwithtime-to-event
endpointandthe
underlying
issues.The
accrualmoduleincludesanovelapproachtoaccrualsimulationsonvariouslevelsofgranularitythatareuseful
inthe
designphaseaswellasfortrialmonitoringandadaptation.Wedescribe
IQVIA
TrialDesigner(ITD),
amoderncomplexuser-friendlyweb-based
system
thato?ersabroadrangeofsuchdesignoptions,statisticalmodelsandsimulationsthatstatisticians
can
use
forfast
exploration
anddevelopmentofboth
establishedandnoveltrialdesigns.Moreover,ITD
facilitatescollaborationamongmultipleusers
andstreamlinesthe
trialdesignprocess.Atwin
paperDose-?ndingin
earlyclinicaltrialswithIQVIA
Trial
Designerisalsoavailable.
|
1Introductionbut
still
needed
tocalculatethe
appropriatesamplesize.This
istheminimumsamplesizerequiredtohaveanacceptable(pre-de?ned)
chanceofachievingstatisticalsignificanceforaproposedstudy.Inaclinicaltrial,the
nullhypothesisstates
(inthesimplestcase)thatthe
treatmentarm
isnodi?erentfromthe
controlarm.
The
alternative
hypothesisassumesatreatmentdi?erencebetween
thetwo
armsandso
if
therearesu?cientdata
toreject
thenullhypothesis,
we
conclude
that
the
treatment
is
e?ective.Thereareafewapproachesforhowadaptivegroupsequentialtrialdesigns(GSDs)can
addresstheissueofnothavingenoughinformation,i.e.,havingonlyassumptionsandestimates
ofthee?ect
size(andothernuisanceparameters),Figure1.E?ect
sizeisthe
magnitudeofthealternativehypothesistreatmentdi?erence.Often,
especiallyfornewtreatments,
it
isnotwellde?ned
priortothetrial,Figure1.
Approachestotakewhenthee?ect
sizeisnotwellde?nedatthebeginningoftheclinicaltrialConservativeStop
early(DesignalargetrialtoensureStopfore?cacynecessarystatisticalpowerwithoptiontostopearlyatIA)forfutilityAgileContinue(Startsmall,ifIAresults
arepromising,performsamplesizereestimationandcontinue)recalculatetheneededsamplesizetoachievethedesiredpowerEnrichmentFocus(Strategicallytargetaspeci?csubgroupafterIAreultsare
in)targetaspeci?csub-populationthatbene?tsfromtreatment2
|
Accrual
Modeling
And
Adaptive
TrialMonitoring
With
IQVIA
TrialDesignerfromthestart
ofthetrialorthatthe
recruitment
rateisconstant
overtime.These
accrualassumptionsmayimpact
the
statistical
resolutionofvariousdesigns,especiallytime-to-event
designs.?
Conservative:
Start
big,designalargetrialtoensurethe
necessary
statistical
power,but
includeaninterimanalysis(IA)
partway
throughwith
the
optiontostop
early.The
early
stoppingcan
happenforoneoftwo
reasons:Togetherthismeansthatwhilethe
meanrecruitmentperiod
length
andmeantriallength
mightbe
asdesigned,the
actual
accrualscenariomightbesigni?cantly
di?erentandmightrequirewaitinglongerforenoughevents
tooccurduetopatientsbeingrecruited
moreslowly
at
the
trialbeginning.Additionally,longeraccrualtimeincreasesthe
durationofobservation
ofpatients
accruedearly
inthe
trial,increasingtheirchancetocontributeevents.?
for
e?cacy
-
if
the
results
at
the
interimanalysis
show
statistically
signi?cant
bene?tsto
the
patients17?
forfutility
-if
the
results
at
theinterimanalysisdonotshowsu?cientdi?erencebetween
thetreatmentandthe
controlarm
(orif
toomanyadverse
e?ects
areobserved)5?
Agile:Start
small,designatrialthatwouldnothavesu?cientstatistical
powertodemonstrate
thee?ect,but
includeaninterimanalysis
partway
through.Ifthe
IA
results
arepromising,perform
samplesizere-estimation
todeterminethe
needed
samplesizetoachievethedesiredpowerwith
theupdatedknowledge
ofthe
e?ect
sizeandcontinuethetrialInthispaperwedescribeIQVIA
TrialDesignerandfocusonthe
groupsequentialmoduleandaccrualmodelingtodemonstrate
someofthe
challengesofadaptivedesignandaccrualandhowmodelingandsimulationscan
helpovercomethem.IQVIA
Trial
Designer?
Enrichment:Ifit
isdeterminedat
theinterimanalysisthatthe
e?ect
sizeissmall,but
thesubjectsthatrespondedtothetreatmentsharecertaincharacteristics,
thismaybe
because
thetreatmentisappropriateonly
forasub-population,
perhapsaspeci?c
variantofthedisease.Insuchcase
it
isreasonabletorecruit
morepatients
fromthissub-population,i.e.,enrichthesample.MachinelearningtoolssuchasSOMS
(SubpopulationOptimizationandModellingSolutions)10
can
be
used
toidentify
thecommoncharacteristics
byprocessingtheavailabledata
from
the
?rst
stage
ofthetrialIQVIA
Trial
Designer
(ITD)
is
a
modern
complex
user-11friendly
web-based
system
that
o?ers
a
broad
range
ofdesign
options,
statistical
models
and
simulations
thatstatisticians
can
use
for
fast
exploration
and
developmentof
novel
trial
designs.
Additionally,
it
is
set
up
to
facilitatecollaboration
among
multiple
users/stakeholders.
Ourcompetitors
include
nQuery
and
East
.
In
the
following,204we
brie?y
describe
ITD
capabilities.Dose-escalationWithin
ITD,
the
availabledose-escalation
methodsinclude3+3
(asaspecialcase
ofm+n),i3+3,BOIN,andmTPI-2for?ndingthe
maximumtolerateddose.For?ndingthe
recommendedphaseII
dosewhen
lookingat
both
toxicity
ande?cacy
thereisPRINTE
andincustom
sessionBOIN-based
simpletwo-parametermethod.
Moredetails
about
these
methods,
theircomparisonand
a
case
study
that
highlights
thechallengesand
needforsimulations
indose-findingisavailable
in
a
twinpaperDose-
indinginearlyclinicalInallthese
approaches,data
aregatheredovertime,andstatistical
comparisonsandsubsequentinformeddecisionsaremadewhen
only
portions
ofthe
datahavebeen
collected.
This
?exibility
isoneofthemainadvantages
ofGSDs
over?xeddesigns.However,therearestill
factors
thatare?xedinthese
adaptivedesignsthatmaymakethedesignsinconsistentwithoperationalreality.trialswith
IQVIATrialDesigner
.13For
example,the
GSDpackagemaymakeincorrectassumptionsabout
the
accrualrate.One
mightassumethatallrecruitment
sitesareenrollingpatients
right
|
3Adaptive
group-sequential
designsthe
interimanalyses
andat
?nalstage,
i.e.,whetherlargeramountof
(β)shouldbe
spentat
early
interimanalyses
orat
?nalstage.
The
di?erenttypes
ofspendingfunctions
supported
inthe
applicationare:Inthe
groupsequentialmoduleinITD,
theusercanselect
fromboth
?xedandadaptivedesignswithendpoints:?
Lan-DeMets
approximationtoO’Brien-Flemingfunction
(OF)15?
di?erenceinmeans-forcontinuousvariables,e.g.,blood
pressure,insulinlevels,
etc.?
Lan-DeMets
approximationtoPocockfunction
(PK)15?
Hwang-Shih-DeCani
Gammafunction
family(HS)9?
Haybittle-Peto
boundaries(HP)8?
binomialproportions
(rawdi?erence,odds
ratio,relative
risk)-forbinary
variables,e.g.,proportion
ofpeoplewho
gotinfected,
arefree
ofseizures,etc.?
time-to-event
-forwaitinguntilcertain
eventhappens,e.g.,survival
analysisinoncology,asthmaattacks,
etc.?
piece-wise
linear
user-speci?ed
spending
function
(US)Itmaybe
appropriatetoconsiderdi?erentspendingfunctions
fore?cacy
andforfutility.
As
trialdesigners,weshouldbe
conservative
about
stoppingearlyfore?cacy,
sincewewanttobe
convincedthatthetreatmentindeedworks,
but
wemaybe
morewillingtoacceptanerrorwhen
consideringstoppingthetrialforfutility.There
are
options
to
demonstrate
superiority,
non-inferiority
or
equivalence
of
the
compared
treatments.The
user
can
also
select
if
they
want
to
test
a
one-sidedhypothesis
(to
demonstrate
treatment
over
placebo),two-sided
hypothesis
(when
comparing
two
treatments)or
one-sided
e?cacy
with
non-binding
futility.Another
reasontouse
conservative
spendingfunctioniswhen
the
only
purpose
oftheinterimanalysisistore-estimate
the
samplesize,but
nottostop
early.Insuchcase,
wewantonly
avery
smallportion
oftype
Ierrortobe
spentat
the
interimanalysisandleavemostofit
availableforthe
?nalanalysis.For
the
situation
with
a
binomial
proportions
endpointand
asingle
treatment
arm,
there
is
also
a
simplegroup
sequential
design
with
two
stages
—
Simon’sdesign
—
available
inthe
custom
module.
This
design19minimizesthe
sample
sizeand
uses
a
single
interimanalysis
todetermine
whether
the
trial
should
bestopped
for
futility
or
continue
tothe
second
stage.Simon
Two
stage
designs
are
common
in
phase
Ibbasket
oncology
studies.?
The
OF
function
spendsvery
little
early
andkeepsmoreforthe
?nallook.
Itmightbe
moresuitable
forearly
terminationtoreject
H
infavorofH
(e?cacy)01because
it
reducestheprobability
ofanunfortunatesituationthatcouldpotentiallyhappeninagroupsequentialtrialwhen
onewouldget
ane?ect
sizeatthe
endofthestudy
thatwouldbe
signi?cantif
thiswasa?xeddesignbut
it
isnotbecause
oftheerrorspendingat
the
interimanalysis.
The
boundariesspeci?ed
bythe
OF
function
decreasewith
thenumberoflooks.SPENDINGFUNCTIONSFor
allendpoints,
the
ITD
groupsequentialmoduleo?ers
amultipleinterimanalyses
feature,but
theuserneeds
tobe
awarethatrepeatedhypothesis
testingingroupsequentialdesigns(onceat
eachinterimanalysis)ofaccumulateddata
increasesthe
type
Ierrorrate.Therefore,e?cacy
boundary
points
arechoseninadvanceusingspendingfunctions
thatensurethatthe
overallsigni?canceleveldoes
notexceedthepre-speci?ed
signi?cancelevel
.?
The
PKfunction
isless
conservative
with
the
earlyspending,moresuitable
forearly
terminationwhenwearenotrejecting
H
(futility)
andmoree?cient0Usingdi?erentspendingfunctions,
theusercanspecify
how
(andtype
II
errorrateβincase
ofconsideringstoppingforfutility)
isspentat
eachofoverawider
set
ofsituations.The
boundariesinthiscase
stay
almost
constant.4
|
Accrual
Modeling
And
Adaptive
TrialMonitoring
With
IQVIA
TrialDesigner?
The
familyofHS
functions
parameterizedbyaparameterγallowsforspendingfunctions
thatareless
conservative
thanOF
but
notasaggressiveasPK.
The
morenegative
thevaluesofγarethemoreconservative
spendingfunctions
they
yield,
with
γ=?4
resemblingthe
OF
function;
γ=0spendsthetype
Ierrorlinearlyandγ=1producesaspendingfunction
similartoPK.?
isonly
used
at
the
penultimatelook?
conventionalWaldstatistic
maythenbe
usedwithout
in?atingthe
type
Ierrorif
theconditionalpowerat
the
interimisabove50%?
Cui-Hung-Wang(CHW)
method3?can
be
implementedat
anylooktocontrol
in?ation,thismethod
weighsthe?
HPboundariesareafamilyofp-value
boundariesoften
used
forblind-breaking
samplesizere-estimation.
These
boundariespre-specify
asmall(same)p-value
asthestoppingcriterion
at
theinterimanalyses.
The
?nalp-value
forevaluatingstatistical
signi?canceat
thelast
lookisthencalculatedinsuchawaythattheoveralltype
Ierroristhepre-speci?ed
.?independentWaldstatistics
obtained
at
eachlooktodeterminethe
statistical
signi?cancewith
pre-speci?ed
weights.
Havingdi?erentsets
ofpatientsweighteddi?erently
issometimescontroversialamonginvestigators
notfamiliarwith
the
technicaldetails
ofadaptivemethodology
andissometimesthe
reasonwhy
the
CDLapproachispreferredoverCHW?
An
ITD
usercan
alsospecify
theirown
spendingfunction
byde?ningtheamountof
tobe
spentatvarioustimepoints.
These
valuesarethenlinearlyinterpolatedtoobtain
thespendingfunction
thatcanthenbe
used
when
trying
toreplicateand/ormodifyapreviously
publishedspendingfunction,
e.g.,atruncated
OF.InITD,
both
ofthese
methods
only
recommendincreasesinsample
size(if
needed),
notdecreases—thisisinaccordancewith
the
USFood
andDrugAdministrationguidanceonadaptive
design
.6Accrual
modelling
and
trial
monitoringITD
o?ers
the
accrual
module
to
model
and
simulatethe
recruitment
period
and
also
monitor
the
accrualprogress
of
the
trial.
The
group
sequential
designmodule
and
the
accrual
simulations
give
the
sameresults
on
average,
but
the
accrual
module
o?ers
greaterinsight
into
various
options
that
do
not
?t
the
standardgroup
sequential
design.
These
insights
potentially
canbe
used
to
modify
the
design
assumptions.The
spending
functions
specify
the
nominal
critical
pointsz
and
corresponding
nominal
p-values
1
—
Φ(z)
(in
one-sided
case)
which
if
crossed,
justify
the
early
termination.SAMPLE
SIZE
RE-ESTIMATIONTo
address
the
issue
of
not
having
enough
informationabout
the
e?ect
size
when
performing
the
initial
samplesize
calculation
for
the
trial,
the
ITD
system
enablesboth
blind-breaking
and
blind-preserving
sample
sizere-estimation.
The
blind-preserving
approach
uses
aFor
example,
some
sites
may
not
be
ready
to
openat
trial
start
and
open
later
so
that
the
recruitmentrate
ramps
up
gradually,
which
means
longer
wait
toobserve
the
needed
number
of
events.
These
types
ofconclusions
can
then
be
added
back
into
the
trial
design.so-called
internal
pilot
study
that
typically
updates7the
information
about
variance.
The
blind-breakingapproach
is
available
using
two
methods:ITD
can
helpanswer
the
questions
forhowtostructureaccrualtoassurethatthe
trialwillhaveenoughobserved
events.
This
mayinvolveplanningtoopenmoresites,
oralternatively
toplantoextend
thedurationofobservation
forlongertimethancalculatedfrom
theoriginalGS
design.?
Chen-DeMets-Lan
method
(CDL)2,16?
alsoknown
asthe
PromisingZoneapproach?
calculatesconditionalpower—the
probability
thatwewouldexpect
to?ndsigni?cantp-value
at
the?nallookgiven
what
happenedso
far
|
5The
accrualmodelingforGSDs
isanextension
oftheTechnical
speci?cationsAnisimovapproach.Itallowsthe
usertospecify
the1ITD
isauser-friendlyweb-based
system
relying
onthe
react,
Node.js,nexosandDockertechnologiesforsecureandresponsivedesignandthe
terraforminfrastructure
forcontinuousdeployment.
The
designismodular,?exible
andsupports
integrationofnew
algorithms.
These
aretypically
?rst
tested
inacustom
module,whichcontainsasimpleintegrateddevelopmentenvironment.groupsofsitesandnumberofsitesineachgroup(thegroupscan
havesizeone,thusallowingmodelingonthe
levelofindividual
sites)andtheiropening/closingcharacteristics
andrecruitment
parameters.The
usercan
alsospecify
non-uniform
recruitmentratesoverseveralrecruitment
periods
andforthetime-to-event
endpointalsopiece-wise
hazardrates.Both
piece-wise
recruitment
ratesandpiece-wisehazardratescan
vary
acrossthe
groupsofsites.The
statistical
methods
and
algorithms
areimplemented
in
R18
using
available
open-source
librarieswhere
applicable.
The
calculations
and
simulationsare
performed
using
Amazon
Web
Services
and
theapplication
can
support
10,000
concurrent
requests.6
|
Accrual
Modeling
And
Adaptive
TrialMonitoring
With
IQVIA
TrialDesignerCasestudy:
Adaptivedesignwithaccrual
monitoringthe
trial.Inthisagilecase,
smallerfunds
areneededupfront,
however,the
sponsorneeds
tobe
preparedtomakeareal-time
commitmentforadditionalresourcesonthe
recommendationofDMC
forthe
study
tocontinue.Fromthispointofview,samplesizere-estimation
ismore?exible
thanthe
errorspendingapproach.The
maingoalofstatistical
analysisofclinicaltrialdataistogeneralizefrom
thesamplepopulationtothewhole
population.This
generalizationismorelikelytobe
accurateif
the
samplesizeislarge,howeverinpractice
thereare?nancialandtimeconstraintslimitingthe
samplesize.Also,
thereareethicalconsiderations,i.e.,wedonotwanttounnecessarilyexpose
peopletotreatmentthatmightproveharmfulorine?ective,
thereforethegoalistohavejustsu?cientsamplesize.However,havingtheminimalsamplesizenecessary
reliesontheassumptionsaboutthe
e?ect
size.Traditionally,stoppingforfutility
hasbeen
morecommonlyused
(i.e.,futility-only
designs),butstoppingforearly
e?cacy
isextremely
valuablewhen
appropriatelyused.
Also
notethatsometimesanon-binding
futility
boundisused,
e.g.,sponsormightwanttocontinuethe
trialanyway
forsafetyrecommendationsevenif
thefutility
boundaryiscrossed.Adaptive
trials
can
makecourse-corrections
basedon
all
the
information
as
it
becomes
available
in
thetrial.
As
a
result,
adaptive
trials
can
makebetter
useof
resources
and
allow
early
stopping
if
the
results
areeither
very
promising
or
unpromising.
The
two
di?erentapproaches
(conservative
vs
agile)
to
handling
theuncertainty
in
the
actual
value
of
the
e?ect
size
beforethe
trial
require
two
di?erent
management
strategies.Spending
function
approachInthissection
wedemonstrate
the
valueofanIA
bystoppingfore?cacy
andstoppingforfutility.EARLYSTOPPINGFOREFFICACYConsider
a
phase
III
study
with
the
overall
survival(time-to-event)
endpoint
with
the
true
but
unknownhazard
ratio
HR
=
0.64.
First,
we
consider
a
conservativeTscenario,
in
which
the
hazard
ratio
under
the
alternativeIn
the
conservative
scenario,
when
one
wants
tobe
able
todetect
the
minimalclinically
relevanttherapeutic
e?ect,
the
resulting
sample
sizecan
be
verylarge.
The
study
might
be
overpowered
if
the
actuale?ect
is
higher.The
sponsor
needs
toallocate
andreserve
signi?cant
funds
and
operational
resourcesinadvance
toprepare
for
a
study
with
a
large
samplesize.However,if
it
becomes
clear
during
the
interimanalysis
that
the
e?ect
is
not
there,
the
study
maybeterminated
early.hypothesis
is
H
:
HR
=
0.7and
one
interim
analysis
isplanned
when
50%
of
events
are
observed.
The
inputparameters
are
summarized
in
Table
1.1As
analternative
(agile)approach,if
thesponsorisunableorunwillingtomakealargesamplesizecommitmentup-front
based
onthelimitedpriordata
availableonthe
new
compound,anexpected(optimistic)e?ect
can
be
used
forthe
calculationofthe
samplesize.This
results
inasmallerstudy
with
theexpectation
ofsamplesizere-estimation
at
theinterimanalysis.
An
independentdata
monitoringcommittee(DMC)
willbe
reviewing
theblindbreakingorblindpreserving
interimdata
at
thepre-speci?ed
pointof
|
7Table
1.
Inputparametersforadaptivedesignwithoneinterimanalysis.PARAMETER
NAMEVALUEendpointhazard
ratio
under
H0hazard
ratio
under
H1type
Ierror
(
)time-to-event
(overallsurvival)10.70.025power
(1
?β)0.9proportion
of
events
at
interim
analysisrandomization
ratioupper
(
)spending0.51OF/PKmedian
survival
timemedian
censoring
timeminimumfollow-up
durationtrial
duration12
months
(controlgroup),14
months
(overall)240
months12
months24
monthsThe
samplesizesfor?xedandadaptivedesignsarecontinueuntilthe
?nallookrequiresmoresubjects
andmoreevents.
This
isthetrade-o?
tobe
madeforthepossibility
thatthe
trialmayendearly.calculatedusingthe
methodologiesdescribed
in
.The14results
aresummarizedinTables2and3.
Wesee
thatcomparedtoa?xeddesign,aGS
designthatneeds
toTable
2.
SamplesizeandneedednumberofeventsassumingHR=0.7.TRIAL
DURATION#SUBJECTS#EVENTS(MONTHS)GS
design,
at
?nallook,
OFGS
design,
at
?nallook,
PKFixed
design2459065258733236733024248
|
Accrual
Modeling
And
Adaptive
TrialMonitoring
With
IQVIA
TrialDesignerTable3.
Group
sequential
design
with
one
interimanalysis
using
a
conservative
spending
function
(Lan-DeMetsapproximation
to
O’Brien-Fleming)
and
anaggressive
spending
function
(Lan-DeMets
approximation
to
Pocock).O'BRIEN-FLEMING
SPENDINGPOCOCK
SPENDINGLOOKPROP.(IF)TIME##NOM.PVALUE##EVENTSNOM.PVALUE(MONTHS)SUBJECTSEVENTSSUBJECTS10.5113.2245905901660.00150.02456521840.0155Final3326523670.0139In
case
of
the
OF
spending
function,
the
di?erence
isin
these
n
patients,
the
study
is
stopped.
Otherwise,1small
(590
vs
587
subjects
and
332
vs
330
events)
but
itis
very
unlikely
that
the
trial
would
stop
for
e?cacy
atthe
interim
analysis
at
13.2months
because
the
nominalprobability
is
very
small
p
=
0.0015(z-score
2.96).n
?
n
additional
patients
are
accrued
for
a
total
of1n.
The
nullhypothesis
is
rejected
if
r
+1
or
more2responses
are
observed
inn.
This
design
yields
a
pre-speci?ed
type
I
error
rate
and
pre-speci?ed
powerwhen
the
true
response
rate
is
p.1Incase
ofthe
PKspendingfunction,
thedi?erenceislarger(652vs
587
subjects
and367vs
330
events),but
thepossibility
ofstoppingearly
ismuchmorelikely,sincetheinterimresults
willbe
evaluatedat
asigni?cancelevel0.0155,i.e.,z-score2.157.As
an
alternative
approach,
if
we
wanted
to
have
acontrol
over
the
type
II
error
spending,
possibly
overmore
than
one
interim
analysis,
we
can
consider
adesign
with
Haybittle-Peto
boundary
for
e?cacy
withvery
small
p-value
(e.g.,p
=
0.000001,
so
virtually
noin?ation
at
the
?nal
analysis)
and
PKfunction
to
controlthe
β
spending.
With
HR
=
0.7we
get
the
z
boundaryvalue
for
futility
0.92which
corresponds
to
0.062
type
IIerror
spent
(outof
0.1)
at
the
interim
analysis.
Note
thatin
this
case,
the
needed
number
of
events
is
190at
thetime
of
interim
(and
380
at
the
time
of
?nal
analysis).Wedo
not
expect
stopping
for
e?cacy,
but
we
have
theoption
to
stop
for
futility.EARLYSTOPPINGFORFUTILITYStopping
early
for
futility
is
of
interest
especially
inphase
II
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 涂料零售數(shù)字化變革考核試卷
- 煤炭企業(yè)運營效率分析考核試卷
- 寵物飼料配方對寵物生長發(fā)育的影響考核試卷
- 染料在塑料與橡膠中的著色技術(shù)考核試卷
- 農(nóng)業(yè)機械化在國際市場競爭力的提升考核試卷
- 2025年-安徽省安全員《B證》考試題庫及答案
- 2025年江蘇省安全員《A證》考試題庫及答案
- 2025年天津市安全員C證考試(專職安全員)題庫附答案
- 2025年-廣東省安全員-C證考試(專職安全員)題庫及答案
- 護理部安全警示
- 消防員應(yīng)急救援安全應(yīng)知應(yīng)會試題及答案
- Unit+5+The+Monarchs+Journey+Language+points+課件-【知識精講精研】高中英語外研版(2019)必修第一冊+
- 掛籃檢查驗收記錄表
- 召回產(chǎn)品處理登記表
- 3q認(rèn)證3q認(rèn)證模板
- 電機能效對照表
- 第4章-甲殼素和殼聚糖-天然高分子材料資料講解課件
- 企業(yè)動態(tài)能力研究梳理與展望論文
- 中國移動公司物業(yè)管理方案
- 基于PLC控制的自動洗車系統(tǒng)設(shè)計
- 不動產(chǎn)登記操作規(guī)范與工作實務(wù)PPT
評論
0/150
提交評論