2024屆新疆阿克蘇市農(nóng)一師中學(xué)數(shù)學(xué)高一下期末聯(lián)考模擬試題含解析_第1頁
2024屆新疆阿克蘇市農(nóng)一師中學(xué)數(shù)學(xué)高一下期末聯(lián)考模擬試題含解析_第2頁
2024屆新疆阿克蘇市農(nóng)一師中學(xué)數(shù)學(xué)高一下期末聯(lián)考模擬試題含解析_第3頁
2024屆新疆阿克蘇市農(nóng)一師中學(xué)數(shù)學(xué)高一下期末聯(lián)考模擬試題含解析_第4頁
2024屆新疆阿克蘇市農(nóng)一師中學(xué)數(shù)學(xué)高一下期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆新疆阿克蘇市農(nóng)一師中學(xué)數(shù)學(xué)高一下期末聯(lián)考模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè),是兩個不同的平面,,是兩條不同的直線,且,()A.若,則 B.若,則C.若,則 D.若,則2.已知=(2,3),=(3,t),=1,則=A.-3 B.-2C.2 D.33.某賽季中,甲?乙兩名籃球隊員各場比賽的得分莖葉圖如圖所示,若甲得分的眾數(shù)為15,乙得分的中位數(shù)為13,則()A.15 B.16 C.17 D.184.同時具有性質(zhì):“①最小正周期是;②圖象關(guān)于直線對稱;③在上是單調(diào)遞增函數(shù)”的一個函數(shù)可以是()A. B.C. D.5.已知角α的終邊上有一點P(sin,cos),則tanα=()A. B. C. D.6.三邊,滿足,則三角形是()A.銳角三角形 B.鈍角三角形 C.等邊三角形 D.直角三角形7.在正四棱柱,,則異面直線與所成角的余弦值為A. B. C. D.8.若,則下列不等式中不正確的是()A. B. C. D.9.己知函數(shù)(,,,)的圖象(部分)如圖所示,則的解析式是()A. B.C. D.10.設(shè)首項為,公比為的等比數(shù)列的前項和為,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.等腰直角中,,CD是AB邊上的高,E是AC邊的中點,現(xiàn)將沿CD翻折成直二面角,則異面直線DE與AB所成角的大小為________.12.中醫(yī)藥是反映中華民族對生命、健康和疾病的認識,具有悠久歷史傳統(tǒng)和獨特理論及技術(shù)方法的醫(yī)藥學(xué)體系,是中華文明的瑰寶.某科研機構(gòu)研究發(fā)現(xiàn),某品種中成藥的藥物成份的含量(單位:)與藥物功效(單位:藥物單位)之間具有關(guān)系:.檢測這種藥品一個批次的5個樣本,得到成份的平均值為,標準差為,估計這批中成藥的藥物功效的平均值為__________藥物單位.13.圓的一條經(jīng)過點的切線方程為______.14.設(shè)為正偶數(shù),,則____________.15.已知直線與軸、軸相交于兩點,點在圓上移動,則面積的最大值和最小值之差為.16.已知都是銳角,,則=_____三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某校準備從高一年級的兩個男生和三個女生中選擇2個人去參加一項比賽.(1)若從這5個學(xué)生中任選2個人,求這2個人都是女生的概率;(2)若從男生和女生中各選1個人,求這2個人包括,但不包括的概率.18.如圖所示,在梯形中,∥,⊥,,⊥平面,⊥.(1)證明:⊥平面;(2)若,求點到平面的距離.19.已知函數(shù)在一個周期內(nèi)的圖像經(jīng)過點和點,且的圖像有一條對稱軸為.(1)求的解析式及最小正周期;(2)求的單調(diào)遞增區(qū)間.20.近年來,我國自主研發(fā)的長征系列火箭的頻頻發(fā)射成功,標志著我國在該領(lǐng)域已逐步達到世界一流水平.火箭推進劑的質(zhì)量為,去除推進劑后的火箭有效載荷質(zhì)量為,火箭的飛行速度為,初始速度為,已知其關(guān)系式為齊奧爾科夫斯基公式:,其中是火箭發(fā)動機噴流相對火箭的速度,假設(shè),,,是以為底的自然對數(shù),,.(1)如果希望火箭飛行速度分別達到第一宇宙速度、第二宇宙速度、第三宇宙速度時,求的值(精確到小數(shù)點后面1位).(2)如果希望達到,但火箭起飛質(zhì)量最大值為,請問的最小值為多少(精確到小數(shù)點后面1位)?由此指出其實際意義.21.設(shè)向量.(Ⅰ)若與垂直,求的值;(Ⅱ)求的最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】試題分析:由面面垂直的判定定理:如果一個平面經(jīng)過另一平面的一條垂線,則兩面垂直,可得,可得考點:空間線面平行垂直的判定與性質(zhì)2、C【解題分析】

根據(jù)向量三角形法則求出t,再求出向量的數(shù)量積.【題目詳解】由,,得,則,.故選C.【題目點撥】本題考點為平面向量的數(shù)量積,側(cè)重基礎(chǔ)知識和基本技能,難度不大.3、A【解題分析】

由圖可得出,然后可算出答案【題目詳解】因為甲得分的眾數(shù)為15,所以由莖葉圖可知乙得分數(shù)據(jù)有7個,乙得分的中位數(shù)為13,所以所以故選:A【題目點撥】本題考查的是莖葉圖的知識,較簡單4、D【解題分析】

利用正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì),逐一檢驗,可得結(jié)論.【題目詳解】A,對于y=cos(),它的周期為4π,故不滿足條件.B,對于y=sin(2x),在區(qū)間上,2x∈[,],故該函數(shù)在區(qū)間上不是單調(diào)遞增函數(shù),故不滿足條件.C,對于y=cos(2x),當(dāng)x時,函數(shù)y,不是最值,故不滿足②它的圖象關(guān)于直線x對稱,故不滿足條件.D,對于y=sin(2x),它的周期為π,當(dāng)x時,函數(shù)y=1,是函數(shù)的最大值,滿足它的圖象關(guān)于直線x對稱;且在區(qū)間上,2x∈[,],故該函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),滿足條件.故選:D.【題目點撥】本題主要考查了正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì),屬于中檔題.5、A【解題分析】

由題意利用任意角的三角函數(shù)的定義,求得tanα的值.【題目詳解】解:∵角α的終邊上有一點P(sin,cos),∴x=sin,y=cos,∴則tanα,故選A.【題目點撥】本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.6、C【解題分析】

由基本不等式得出,將三個不等式相加得出,由等號成立的條件可判斷出的形狀.【題目詳解】為三邊,,由基本不等式可得,將上述三個不等式相加得,當(dāng)且僅當(dāng)時取等號,所以,是等邊三角形,故選C.【題目點撥】本題考查三角形形狀的判斷,考查基本不等式的應(yīng)用,利用基本不等式要注意“一正、二定、三相等”條件的應(yīng)用,考查推理能力,屬于中等題.7、A【解題分析】

作出兩異面直線所成的角,然后由余弦定理求解.【題目詳解】在正四棱柱中,則異面直線與所成角為或其補角,在中,,,.故選A.【題目點撥】本題考查異面直線所成的角,解題關(guān)鍵是根據(jù)定義作出異面直線所成的角,然后通過解三角形求之.8、C【解題分析】

,可得,則根據(jù)不等式的性質(zhì)逐一分析選項,A:,,所以成立;B:,則,根據(jù)基本不等式以及等號成立的條件則可判斷;C:且,根據(jù)可乘性可知結(jié)果;D:,根據(jù)乘方性可判斷結(jié)果.【題目詳解】A:由題意,不等式,可得,則,,所以成立,所以A是正確的;B:由,則,所以,因為,所以等號不成立,所以成立,所以B是正確的;C:由且,根據(jù)不等式的性質(zhì),可得,所以C不正確;D:由,可得,所以D是正確的,故選:C.【題目點撥】本題考查不等式的性質(zhì),不等式等號成立的條件,熟記不等式的性質(zhì)是解題的關(guān)鍵,屬于基礎(chǔ)題.9、C【解題分析】

根據(jù)圖象可知,利用正弦型函數(shù)可求得;根據(jù)最大值和最小值可確定,利用及可求得,從而得到函數(shù)解析式.【題目詳解】由圖象可知,的最小正周期:又又,且,,即,本題正確選項:【題目點撥】本題考查根據(jù)圖象求解三角函數(shù)解析式的問題,關(guān)鍵是能夠明確由最大值和最小值確定;由周期確定;通常通過最值點來進行求解,屬于??碱}型.10、D【解題分析】Sn====3-2an.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

取的中點,連接,則與所成角即為與所成角,根據(jù)已知可得,,可以判斷三角形為等邊三角形,進而求出異面直線直線DE與AB所成角.【題目詳解】取的中點,連接,則,直線DE與AB所成角即為與所成角,,,,,,即三角形為等邊三角形,異面直線DE與AB所成角的大小為.故答案為:【題目點撥】本題考查立體幾何中的翻折問題,考查了異面直線所成的角,考查了學(xué)生的空間想象能力,屬于基礎(chǔ)題.12、92【解題分析】

由題可得,進而可得,再計算出,從而得出答案.【題目詳解】5個樣本成份的平均值為,標準差為,所以,,即,解得因為,所以所以這批中成藥的藥物功效的平均值藥物單位【題目點撥】本題考查求幾個數(shù)的平均數(shù),解題的關(guān)鍵是求出,屬于一般題.13、【解題分析】

根據(jù)題意,設(shè)為,設(shè)過點圓的切線為,分析可得在圓上,求出直線的斜率,分析可得直線的斜率,由直線的點斜式方程計算可得答案.【題目詳解】根據(jù)題意,設(shè)為,設(shè)過點圓的切線為,圓的方程為,則點在圓上,則,則直線的斜率,則直線的方程為,變形可得,故答案為.【題目點撥】本題考查圓的切線方程,注意分析點與圓的位置關(guān)系.14、【解題分析】

得出的表達式,然后可計算出的表達式.【題目詳解】,,因此,.故答案為:.【題目點撥】本題考查數(shù)學(xué)歸納法的應(yīng)用,考查項的變化,考查計算能力,屬于基礎(chǔ)題.15、15【解題分析】

解:設(shè)作出與已知直線平行且與圓相切的直線,

切點分別為,如圖所示

則動點C在圓上移動時,若C與點重合時,

△ABC面積達到最小值;而C與點重合時,△ABC面積達到最大值

∵直線3x+4y?12=0與x軸、y軸相交于A(4,0)、B(0,3)兩點

可得∴△ABC面積的最大值和最小值之差為

,

其中分別為點、點到直線AB的距離

∵是圓(x?5)2+(y?6)2=9的兩條平行切線與圓的切點

∴點、點到直線AB的距離之差等于圓的直徑,即

因此△ABC面積的最大值和最小值之差為

故答案為:1516、【解題分析】

由已知求出,再由兩角差的正弦公式計算.【題目詳解】∵都是銳角,∴,又,∴,,∴.故答案為.【題目點撥】本題考查兩角和與差的正弦公式.考查同角間的三角函數(shù)關(guān)系.解題關(guān)鍵是角的變換,即.這在三角函數(shù)恒等變換中很重要,即解題時要觀察“已知角”和“未知角”的關(guān)系,根據(jù)這個關(guān)系選用相應(yīng)的公式計算.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】

(1)寫出從5個學(xué)生中任選2個人的所有等可能基本事件,計算事件2個人都是女生所含的基本事件個數(shù);(2)寫出從男生和女生中各選1個人的所有等可能基本事件,計算事件2個人包括,但不包括所含的基本事件個數(shù).【題目詳解】(1)由題意知,從5個學(xué)生中任選2個人,其所有等可能基本事件有:,,,,,,,,,,共10個,選2個人都是女生的事件所包含的基本事件有,,,共3個,則所求事件的概率為.(2)從男生和女生中各選1個人,其所有可能的結(jié)果組成的基本事件有,,,,,,共6個,包括,但不包括的事件所包含的基本事件有,,共2個,則所求事件的概率為.【題目點撥】本題的兩問均考查利用古典概型的概率計算公式,求事件發(fā)生的概率,求解過程中要求列出所有等可能結(jié)果,并指出事件所包含的基本事件個數(shù),最后代入公式計算概率.18、(1)見解析(2)【解題分析】

(1)通過⊥,⊥來證明;(2)根據(jù)等體積法求解.【題目詳解】(1)證明:∵⊥平面,平面,∴⊥.又⊥,,平面,平面,∴⊥平面.(2)由已知得,所以且由(1)可知,由勾股定理得∵平面∴=,且∴,由,得∴即點到平面的距離為【題目點撥】本題考查線面垂直與點到平面的距離.線面垂直的證明要轉(zhuǎn)化為線線垂直;點到平面的距離常規(guī)方法是作出垂線段求解,此題根據(jù)等體積法能簡化計算.19、(1),;(2).【解題分析】

(1)由函數(shù)的圖象經(jīng)過點且f(x)的圖象有一條對稱軸為直線,可得最大值A(chǔ),且能得周期并求得ω,由五點法作圖求出的值,可得函數(shù)的解析式.(2)利用正弦函數(shù)的單調(diào)性求得f(x)的單調(diào)遞增區(qū)間.【題目詳解】(1)函數(shù)f(x)=Asin(ωx+)(A>0,ω>0,)在一個周期內(nèi)的圖象經(jīng)過點,,且f(x)的圖象有一條對稱軸為直線,故最大值A(chǔ)=4,且,∴,∴ω=1.所以.因為的圖象經(jīng)過點,所以,所以,.因為,所以,所以.(2)因為,所以,,所以,,即的單調(diào)遞增區(qū)間為.【題目點撥】本題主要考查由函數(shù)y=Asin(ωx+)的性質(zhì)求解析式,通常由函數(shù)的最大值求出A,由周期求出ω,由五點法作圖求出的值,考查了正弦型函數(shù)的單調(diào)性問題,屬于基礎(chǔ)題.20、(1)(2)見解析【解題分析】

(1)弄清題意,將相關(guān)數(shù)據(jù)代入齊奧爾科夫斯基公式:,即可得出各個等級的速度對應(yīng)的的值;(2)弄清題意與相關(guān)名詞,火箭起飛質(zhì)量即為,將公式變形,分離出,解不等式即可得,的最小值為.【題目詳解】(1)由題意可得,,,且,,當(dāng)達到第一宇宙速度時,有,;當(dāng)達到第二宇宙速度時,有,;當(dāng)達到第三宇宙速度時,有,.(2)因為希望達到,但火箭起飛質(zhì)量最大值為,,,即,得,的最小值為比較(1)中當(dāng)達到第三宇宙速度時,;火箭起飛質(zhì)量為,此時,達到,但火

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論