2024屆阿克地區(qū)溫宿二中數(shù)學高一第二學期期末質(zhì)量檢測模擬試題含解析_第1頁
2024屆阿克地區(qū)溫宿二中數(shù)學高一第二學期期末質(zhì)量檢測模擬試題含解析_第2頁
2024屆阿克地區(qū)溫宿二中數(shù)學高一第二學期期末質(zhì)量檢測模擬試題含解析_第3頁
2024屆阿克地區(qū)溫宿二中數(shù)學高一第二學期期末質(zhì)量檢測模擬試題含解析_第4頁
2024屆阿克地區(qū)溫宿二中數(shù)學高一第二學期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆阿克地區(qū)溫宿二中數(shù)學高一第二學期期末質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,則的概率為()A. B. C. D.2.已知滿足,且,那么下列選項中一定成立的是()A. B. C. D.3.已知兩點,若點是圓上的動點,則面積的最大值為()A.13 B.3 C. D.4.正方體中,異面直線與BC所成角的大小為()A. B. C. D.5.某市新上了一批便民公共自行車,有綠色和橙黃色兩種顏色,且綠色公共自行車和橙黃色公共自行車的數(shù)量比為2∶1,現(xiàn)在按照分層抽樣的方法抽取36輛這樣的公共自行車放在某校門口,則其中綠色公共自行車的輛數(shù)是()A.8 B.12 C.16 D.246.半圓的直徑,為圓心,是半圓上不同于的任意一點,若為半徑上的動點,則的最小值是()A.2 B.0 C.-2 D.47.已知兩點,,若點是圓上的動點,則△面積的最小值是A. B.6 C.8 D.8.已知函數(shù),此函數(shù)的圖象如圖所示,則點的坐標是()A. B. C. D.9.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,≤)的圖象如下,則點的坐標是()A.(,) B.(,)C.(,) D.(,)10.將函數(shù)的圖象向右平移個單位長度得到圖像,則下列判斷錯誤的是()A.函數(shù)的最小正周期是 B.圖像關(guān)于直線對稱C.函數(shù)在區(qū)間上單調(diào)遞減 D.圖像關(guān)于點對稱二、填空題:本大題共6小題,每小題5分,共30分。11.某奶茶店的日銷售收入y(單位:百元)與當天平均氣溫x(單位:)之間的關(guān)系如下:x012y5221通過上面的五組數(shù)據(jù)得到了x與y之間的線性回歸方程:;但現(xiàn)在丟失了一個數(shù)據(jù),該數(shù)據(jù)應(yīng)為____________.12.函數(shù)f(x)=sin22x的最小正周期是__________.13.已知直線,圓O:上到直線的距離等于2的點有________個。14.函數(shù)可由y=sin2x向左平移___________個單位得到.15.已知內(nèi)接于拋物線,其中O為原點,若此內(nèi)接三角形的垂心恰為拋物線的焦點,則的外接圓方程為_____.16.若函數(shù)的反函數(shù)的圖象過點,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,角所對的邊分別為,滿足(1)求的值;(2)若,求b的取值范圍.18.(1)計算(2)已知,求的值19.已知,其中,,.(1)求的單調(diào)遞增區(qū)間;(2)在中,角,,所對的邊分別為,,,,,且向量與共線,求邊長和的值.20.如圖,三角形中,,是邊長為l的正方形,平面底面,若分別是的中點.(1)求證:底面;(2)求幾何體的體積.21.如圖,已知點和點,,且,其中為坐標原點.(1)若,設(shè)點為線段上的動點,求的最小值;(2)若,向量,,求的最小值及對應(yīng)的的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】

由,得,當時,即可求出的范圍,根據(jù)幾何概型的公式,即可求解.【題目詳解】由,得,當,即當時,,所以的概率為.【題目點撥】本題考查幾何概型的公式,屬基礎(chǔ)題2、D【解題分析】

首先根據(jù)題意得到,,結(jié)合選項即可找到答案.【題目詳解】因為,所以.因為,所以.故選:D【題目點撥】本題主要考查不等式的性質(zhì),屬于簡單題.3、C【解題分析】

先求出直線方程,然后計算出圓心到直線的距離,根據(jù)面積的最大時,以及高最大的條件,可得結(jié)果.【題目詳解】由,利用直線的截距式所以直線方程為:即由圓,即所以圓心為,半徑為則圓心到直線的距離為要使面積的最大,則圓上的點到最大距離為所以面積的最大值為故選:C【題目點撥】本題考查圓與直線的幾何關(guān)系以及點到直線的距離,屬基礎(chǔ)題.4、D【解題分析】

利用異面直線與BC所成角的的定義,平移直線,即可得答案.【題目詳解】在正方體中,易得.異面直線與垂直,即所成的角為.故選:D.【題目點撥】本題考查異面直線所成角的定義,考查對基本概念的理解,屬于基礎(chǔ)題.5、D【解題分析】設(shè)放在該校門口的綠色公共自行車的輛數(shù)是x,則,解得x=1.故選D6、C【解題分析】

將轉(zhuǎn)化為,利用向量數(shù)量積運算化簡,然后利用基本不等式求得表達式的最小值.【題目詳解】畫出圖像如下圖所示,,等號在,即為的中點時成立.故選C.【題目點撥】本小題主要考查平面向量加法運算,考查平面向量的數(shù)量積運算,考查利用基本不等式求最值,屬于中檔題.7、A【解題分析】

求得圓的方程和直線方程以及,利用三角換元假設(shè),利用點到直線距離公式和三角函數(shù)知識可求得,代入三角形面積公式可求得結(jié)果.【題目詳解】由題意知,圓的方程為:,直線方程為:,即設(shè)點到直線的距離:,其中當時,本題正確選項:【題目點撥】本題考查點到直線距離的最值的求解問題,關(guān)鍵是能夠利用三角換元的方式將問題轉(zhuǎn)化為三角函數(shù)的最值的求解問題.8、B【解題分析】

根據(jù)確定的兩個相鄰零點的值可以求出最小正周期,進而利用正弦型最小正周期公式求出的值,最后把其中的一個零點代入函數(shù)的解析式中,求出的值即可.【題目詳解】設(shè)函數(shù)的最小正周期為,因此有,當時,,因此的坐標為:.故選:B【題目點撥】本題考查了通過三角函數(shù)的圖象求參數(shù)問題,屬于基礎(chǔ)題.9、C【解題分析】

由函數(shù)f(x)的部分圖象求得A、T、ω和φ的值即可.【題目詳解】由函數(shù)f(x)=Asin(ωx+φ)的部分圖象知,A=2,T=2×(4﹣1)=6,∴ω,又x=1時,y=2,∴φ2kπ,k∈Z;∴φ2kπ,k∈Z;又0<φ,∴φ,∴點P(,).故選C.【題目點撥】已知函數(shù)的圖象求解析式(1).(2)由函數(shù)的周期求(3)利用“五點法”中相對應(yīng)的特殊點求.10、C【解題分析】

根據(jù)三角函數(shù)的圖象平移關(guān)系求出的解析式,結(jié)合函數(shù)的單調(diào)性,對稱性分別進行判斷即可.【題目詳解】由題意,將函數(shù)的圖象向右平移個單位長度,可得,對于,函數(shù)的最小正周期為,所以該選項是正確的;對于,令,則為最大值,函數(shù)圖象關(guān)于直線,對稱是正確的;對于中,,則,,則函數(shù)在區(qū)間上先減后增,不正確;對于中,令,則,圖象關(guān)于點對稱是正確的,故選.【題目點撥】本題主要考查命題的真假判斷,涉及三角函數(shù)的單調(diào)性,對稱性,求出解析式是解決本題的關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、4【解題分析】

根據(jù)回歸直線經(jīng)過數(shù)據(jù)的中心點可求.【題目詳解】設(shè)丟失的數(shù)據(jù)為,則,,把代入回歸方程可得,故答案為:4.【題目點撥】本題主要考查回歸直線的特征,明確回歸直線一定經(jīng)過樣本數(shù)據(jù)的中心點是求解本題的關(guān)鍵,側(cè)重考查數(shù)學運算的核心素養(yǎng).12、.【解題分析】

將所給的函數(shù)利用降冪公式進行恒等變形,然后求解其最小正周期即可.【題目詳解】函數(shù),周期為【題目點撥】本題主要考查二倍角的三角函數(shù)公式?三角函數(shù)的最小正周期公式,屬于基礎(chǔ)題.13、3;【解題分析】

根據(jù)圓心到直線的距離和半徑之間的長度關(guān)系,可通過圖形確定所求點的個數(shù).【題目詳解】由圓的方程可知,圓心坐標為,半徑圓心到直線的距離:如上圖所示,此時,則到直線距離為的點有:,共個本題正確結(jié)果:【題目點撥】本題考查根據(jù)圓與直線的位置關(guān)系求解圓上點到直線距離為定值的點的個數(shù),關(guān)鍵是能夠根據(jù)圓心到直線的距離確定直線的大致位置,從而根據(jù)半徑長度確定點的個數(shù).14、【解題分析】

將轉(zhuǎn)化為,再利用平移公式得到答案.【題目詳解】向左平移故答案為【題目點撥】本題考查三角函數(shù)圖像的平移,將正弦函數(shù)化為余弦函數(shù)是解題的關(guān)鍵,也可以將余弦函數(shù)化為正弦函數(shù)求解.15、【解題分析】

由拋物線的對稱性知A、B關(guān)于x軸對稱,設(shè)出它們的坐標,利用三角形的垂心的性質(zhì),結(jié)合斜率之積等于﹣1即可求得直線MN的方程,即可求出點C的坐標,問題得以解決.【題目詳解】∵拋物線關(guān)于x軸對稱,內(nèi)接三角形的垂心恰為拋物線的焦點,三邊上的高過焦點,∴另兩個頂點A,B關(guān)于x軸對稱,即△ABO是等腰三角形,作AO的中垂線MN,交x軸與C點,而Ox是AB的中垂線,故C點即為△ABO的外接圓的圓心,OC是外接圓的半徑,設(shè)A(x1,2),B(x1,﹣2),連接BF,則BF⊥AO,∵kBF,kAO,∴kBF?kAO=?1,整理,得x1(x1﹣5)=1,則x1=5,(x1=1不合題意,舍去),∵AO的中點為(,),且MN∥BF,∴直線MN的方程為y(x),當x1=5代入得2x+4y﹣91,∵C是MN與x軸的交點,∴C(,1),而△ABO的外接圓的半徑OC,于是得到三角形外接圓方程為(x)2+y2=()2,△OAB的外接圓方程為:x2﹣9x+y2=1,故答案為x2﹣9x+y2=1.【題目點撥】本題考查拋物線的簡單性質(zhì),考查了兩直線垂直與斜率的關(guān)系,是中檔題16、【解題分析】

由反函數(shù)的性質(zhì)可得的圖象過,將代入,即可得結(jié)果.【題目詳解】的反函數(shù)的圖象過點,的圖象過,故答案為.【題目點撥】本題主要考查反函數(shù)的基本性質(zhì),意在考查對基礎(chǔ)知識掌握的熟練程度,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】

(1)代入條件化簡得,再由同角三角函數(shù)基本關(guān)系求出;(2)利用余弦定理、,把表示成關(guān)于的二次函數(shù).【題目詳解】(1),,即,,,又,解得:.(2),可得,由余弦定理可得:,,所以b的取值范圍為.【題目點撥】對于運動變化問題,常用函數(shù)與方程的思想進行研究,所以自然而然想到構(gòu)造以是關(guān)于或的函數(shù).18、(1)1+;(2).【解題分析】

(1)利用對數(shù)的運算法則計算得解;(2)先化簡已知得,再把它代入化簡的式子即得解.【題目詳解】(1)原式=1+;(2)由題得,所以.【題目點撥】本題主要考查對數(shù)的運算,考查誘導公式化簡求值和同角的三角函數(shù)關(guān)系,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.19、(1);(2).【解題分析】試題分析:(1)化簡得,代入,求得增區(qū)間為;(2)由求得,余弦定理得.因為向量與共線,所以,由正弦定理得,解得.試題解析:(1)由題意知,,在上單調(diào)遞增,令,得,的單調(diào)遞增區(qū)間.(2),又,即.,由余弦定理得.因為向量與共線,所以,由正弦定理得.考點:三角函數(shù)恒等變形、解三角形.20、(1)證明見解析;(2).【解題分析】試題分析:(1)通過面面平行證明線面平行,所以取的中點,的中點,連接.只需通過證明HG//BC,HF//AB來證明面GHF//面ABC,從而證明底面.(2)原圖形可以看作是以點C為頂點,ABDE為底的四棱錐,所四棱錐的體積公式可求得體積.試題解析:(1)取的中點,的中點,連接.(如圖)∵分別是和的中點,∴,且,,且.又∵為正方形,∴,.∴且.∴為平行四邊形.∴,又平面,∴平面.(2)因為,∴,又平面平面,平面,∴平面.∵三角形是等腰直角三角形,∴.∵是四棱錐,∴.【題目點撥】證明線面平行時,先直觀判斷平面內(nèi)是否存在一條直線和已知直線平行,若找不到這樣的直線,可以考慮通過面面平行來推導線面平行,應(yīng)用線面平行性質(zhì)的關(guān)鍵是如何確定交線的位置,有時需要經(jīng)過已知直線作輔助平面來確定交線.在應(yīng)用線面平行、面面平行的判定定理和性質(zhì)定理進行平行轉(zhuǎn)化時,一定要注意定理成立的條件,嚴格按照定理成立的條件規(guī)范書寫步驟,如把線面平行轉(zhuǎn)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論