版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
吉林省通化市“BEST合作體”2024屆數(shù)學(xué)高一第二學(xué)期期末達(dá)標(biāo)測試試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知是等差數(shù)列的前項(xiàng)和,.若對恒成立,則正整數(shù)構(gòu)成的集合是()A. B. C. D.2.如圖,函數(shù)與坐標(biāo)軸的三個(gè)交點(diǎn)P,Q,R滿足,,M為QR的中點(diǎn),,則A的值為()A. B. C. D.3.已知圓,設(shè)平面區(qū)域,若圓心,且圓與軸相切,則的最大值為()A.5 B.29 C.37 D.494.在正項(xiàng)等比數(shù)列中,,則()A. B. C. D.5.函數(shù)f(x)=x?lnA. B.C. D.6.已知函數(shù)f(x),則f[f(2)]=()A.1 B.2 C.3 D.47.的內(nèi)角的對邊分別為,分別根據(jù)下列條件解三角形,其中有兩解的是()A.B.C.D.8.三角形的三條邊長是連續(xù)的三個(gè)自然數(shù),且最大角是最小角的2倍,則該三角形的最大邊長為()A.4 B.5 C.6 D.79.已知,則的值域?yàn)椋ǎ〢. B. C. D.10.中,若,則的形狀是()A.等腰三角形 B.等邊三角形C.銳角三角形 D.直角三角形二、填空題:本大題共6小題,每小題5分,共30分。11.直線在軸上的截距是__________.12.已知角α的終邊與單位圓交于點(diǎn).則___________.13.在中,角所對邊長分別為,若,則的最小值為__________.14.如圖,在等腰直角三角形ABC中,,,以AB為直徑在外作半圓O,P是半圓弧AB上的動(dòng)點(diǎn),點(diǎn)Q在斜邊BC上,若,則的取值范圍是________.15.從甲、乙、丙、丁四個(gè)學(xué)生中任選兩人到一個(gè)單位實(shí)習(xí),余下的兩人到另一單位實(shí)習(xí),則甲、乙兩人不在同一單位實(shí)習(xí)的概率為________.16.若正四棱錐的側(cè)棱長為,側(cè)面與底面所成的角是45°,則該正四棱錐的體積是________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.的內(nèi)角,,的對邊分別為,,,設(shè).(1)求;(2)若,求.18.如圖,在多面體中,為等邊三角形,,點(diǎn)為邊的中點(diǎn).(Ⅰ)求證:平面;(Ⅱ)求證:平面平面;(Ⅲ)求直線與平面所成角的正弦值.19.已知數(shù)列滿足.(1)若,證明:數(shù)列是等比數(shù)列,求的通項(xiàng)公式;(2)求的前項(xiàng)和.20.已知函數(shù)=的定義域?yàn)?的定義域?yàn)?其中為常數(shù)).(1)若,求及;(2)若,求實(shí)數(shù)的取值范圍.21.設(shè)兩個(gè)非零向量,不共線,如果,,.(1)求證:、、共線;(2)試確定實(shí)數(shù),使和共線.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解題分析】
先分析出,即得k的值.【題目詳解】因?yàn)橐驗(yàn)樗?所以,所以正整數(shù)構(gòu)成的集合是.故選A【題目點(diǎn)撥】本題主要考查等差數(shù)列前n項(xiàng)和的最小值的求法,意在考查學(xué)生對該知識(shí)的理解掌握水平和分析推理能力.2、D【解題分析】
用周期表示出點(diǎn)坐標(biāo),從而又可得點(diǎn)坐標(biāo),再求出點(diǎn)坐標(biāo)后利用求得,得.【題目詳解】記函數(shù)的周期,則,因?yàn)?,∴,是中點(diǎn),則,∴,解得,∴,由得,∵,∴,,,∴,故選:D.【題目點(diǎn)撥】本題考查求三角函數(shù)的解析式,掌握正弦函數(shù)的圖象與性質(zhì)是解題關(guān)鍵.3、C【解題分析】試題分析:作出可行域如圖,圓C:(x-a)2+(y-b)2=1的圓心為,半徑的圓,因?yàn)閳A心C∈Ω,且圓C與x軸相切,可得,所以所以要使a2+b2取得的最大值,只需取得最大值,由圖像可知當(dāng)圓心C位于B點(diǎn)時(shí),取得最大值,B點(diǎn)的坐標(biāo)為,即時(shí)是最大值.考點(diǎn):線性規(guī)劃綜合問題.4、D【解題分析】
結(jié)合對數(shù)的運(yùn)算,得到,即可求解.【題目詳解】由題意,在正項(xiàng)等比數(shù)列中,,則.故選:D.【題目點(diǎn)撥】本題主要考查了等比數(shù)列的性質(zhì),以及對數(shù)的運(yùn)算求值,其中解答中熟記等比數(shù)列的性質(zhì),合理應(yīng)用對數(shù)的運(yùn)算求解是解答的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.5、D【解題分析】
判斷函數(shù)的奇偶性排除選項(xiàng),利用特殊點(diǎn)的位置排除選項(xiàng)即可.【題目詳解】函數(shù)f(x)=x?ln|x|是奇函數(shù),排除選項(xiàng)A,當(dāng)x=1e時(shí),y=-1e,對應(yīng)點(diǎn)在故選:D.【題目點(diǎn)撥】本題考查函數(shù)的圖象的判斷,函數(shù)的奇偶性以及特殊點(diǎn)的位置是判斷函數(shù)的圖象的常用方法.6、B【解題分析】
根據(jù)分段函數(shù)的表達(dá)式求解即可.【題目詳解】由題.故選:B【題目點(diǎn)撥】本題主要考查了分段函數(shù)的求值,屬于基礎(chǔ)題型.7、D【解題分析】
運(yùn)用正弦定理公式,可以求出另一邊的對角正弦值,最后還要根據(jù)三角形的特點(diǎn):“大角對大邊”進(jìn)行合理排除.【題目詳解】A.,由所以不存在這樣的三角形.B.,由且所以只有一個(gè)角BC.中,同理也只有一個(gè)三角形.D.中此時(shí),所以出現(xiàn)兩個(gè)角符合題意,即存在兩個(gè)三角形.所以選擇D【題目點(diǎn)撥】在直接用正弦定理求另外一角中,求出后,記得一定要去判斷是否會(huì)出現(xiàn)兩個(gè)角.8、C【解題分析】
根據(jù)三角形滿足的兩個(gè)條件,設(shè)出三邊長分別為,三個(gè)角分別為,利用正弦定理列出關(guān)系式,根據(jù)二倍角的正弦函數(shù)公式化簡后,表示出,然后利用余弦定理得到,將表示出的代入,整理后得到關(guān)于的方程,求出方程的解得到的值,【題目詳解】解:設(shè)三角形三邊是連續(xù)的三個(gè)自然,三個(gè)角分別為,
由正弦定理可得:,
,
再由余弦定理可得:,
化簡可得:,解得:或(舍去),
∴,故三角形的三邊長分別為:,故選:C.【題目點(diǎn)撥】此題考查了正弦、余弦定理,以及二倍角的正弦函數(shù)公式,正弦、余弦定理很好的建立了三角形的邊角關(guān)系,熟練掌握定理是解本題的關(guān)鍵,屬于中檔題.9、C【解題分析】
由已知條件,先求出函數(shù)的周期,由于,即可求出值域.【題目詳解】因?yàn)?,所以,又因?yàn)?,所以?dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),,所以的值域?yàn)?故選:C.【題目點(diǎn)撥】本題考查三角函數(shù)的值域,利用了正弦函數(shù)的周期性.10、D【解題分析】
根據(jù)正弦定理,得到,進(jìn)而得到,再由兩角和的正弦公式,即可得出結(jié)果.【題目詳解】因?yàn)?,所以,所以,即,所以,又因此,所以,即三角形為直角三角?故選D【題目點(diǎn)撥】本題主要考查三角形形狀的判斷,熟記正弦定理即可,屬于??碱}型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
把直線方程化為斜截式,可得它在軸上的截距.【題目詳解】解:直線,即,故它在軸上的截距是4,故答案為:.【題目點(diǎn)撥】本題主要考查直線方程的幾種形式,屬于基礎(chǔ)題.12、【解題分析】
直接利用三角函數(shù)的坐標(biāo)定義求解.【題目詳解】由題得.故答案為【題目點(diǎn)撥】本題主要考查三角函數(shù)的坐標(biāo)定義,意在考查學(xué)生對該知識(shí)的理解掌握水平,屬于基礎(chǔ)題.13、【解題分析】
根據(jù)余弦定理,可得,然后利用均值不等式,可得結(jié)果.【題目詳解】在中,,由,所以又,當(dāng)且僅當(dāng)時(shí)取等號(hào)故故的最小值為故答案為:【題目點(diǎn)撥】本題考查余弦定理以及均值不等式,屬基礎(chǔ)題.14、【解題分析】
建立直角坐標(biāo)系,得出的坐標(biāo),利用數(shù)量積的坐標(biāo)表示得出,結(jié)合正弦函數(shù)的單調(diào)性得出的取值范圍.【題目詳解】取中點(diǎn)為,建立如下圖所示的直角坐標(biāo)系則,設(shè),,則,則設(shè)點(diǎn),則,則當(dāng),即時(shí),取最大值當(dāng),即時(shí),取最小值則的取值范圍是故答案為:【題目點(diǎn)撥】本題主要考查了利用數(shù)量積求參數(shù)以及求正弦型函數(shù)的最值,屬于較難題.15、.【解題分析】
求得從甲、乙、丙、丁四個(gè)學(xué)生中任選兩人的總數(shù)和甲、乙兩人不在同一單位實(shí)習(xí)的方法數(shù),由古典概型的概率計(jì)算公式可得所求值.【題目詳解】解:從甲、乙、丙、丁四個(gè)學(xué)生中任選兩人的方法數(shù)為種,甲、乙兩人不在同一單位實(shí)習(xí)的方法數(shù)為種,則甲、乙兩人不在同一單位實(shí)習(xí)的概率為.故答案為:.【題目點(diǎn)撥】本題主要考查古典概型的概率計(jì)算公式,考查運(yùn)算能力,屬于基礎(chǔ)題.16、【解題分析】
過棱錐頂點(diǎn)作,平面,則為的中點(diǎn),為正方形的中心,連結(jié),設(shè)正四棱錐的底面長為,根據(jù)已知求出a=2,SO=1,再求該正四棱錐的體積.【題目詳解】過棱錐頂點(diǎn)作,平面,則為的中點(diǎn),為正方形的中心,連結(jié),則為側(cè)面與底面所成角的平面角,即,設(shè)正四棱錐的底面長為,則,所以,在中,∵∴,解得,∴∴棱錐的體積.故答案為【題目點(diǎn)撥】本題主要考查空間線面角的計(jì)算,考查棱錐體積的計(jì)算,意在考查學(xué)生對這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】
(1)由正弦定理得,再利用余弦定理的到.(2)將代入等式,化簡得到答案.【題目詳解】解:(1)由結(jié)合正弦定理得;∴又,∴.(2)由,∴∴,∴∴又∴解得:,.【題目點(diǎn)撥】本題考查了正弦定理,余弦定理,和差公式,意在考查學(xué)生的計(jì)算能力.18、(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ).【解題分析】
(I)取中點(diǎn),連結(jié),利用三角形中位線定理可證明是平行四邊形,可得,由線面平行的判定定理可得結(jié)果;(Ⅱ)先證明,,可得平面,從而可得平面,由面面垂直的判定定理可得結(jié)果;(Ⅲ)取中點(diǎn),連結(jié),直線與平面所成角等于直線與平面所成角,過作,垂足為,連接,為直線與平面所成角,利用直角三角形的性質(zhì)可得結(jié)果.【題目詳解】(I)取中點(diǎn),連結(jié),是平行四邊形,平面,平面,平面.(II),又平面平面,又為等邊三角形,為邊的中點(diǎn),平面由(I)可知,平面,平面平面平面.(III)取中點(diǎn),連結(jié),所以直線與平面所成角即為直線與平面所成角,過作,垂足為,連接.平面平面,平面,平面.為斜線在面內(nèi)的射影,為直線與平面所成角,在中,直線與平面所成角的正弦值為.【題目點(diǎn)撥】本題主要考查線面平行、面面垂直的證明以及線面角的求解方法,屬于中檔題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個(gè)定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面.19、(1)證明見解析,;(2).【解題分析】
(1)由條件可得,即,運(yùn)用等比數(shù)列的定義,即可得到結(jié)論;運(yùn)用等比數(shù)列的通項(xiàng)公式可得所求通項(xiàng)。(2)數(shù)列的求和方法:錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式,可得所求的和?!绢}目詳解】解:(1)證明:由,得,又,,又,所以是首相為1,公比為2的等比數(shù)列;,。(2)前項(xiàng)和,,兩式相減可得:化簡可得【題目點(diǎn)撥】本題考查利用輔助數(shù)列求通項(xiàng)公式,以及錯(cuò)位相減求和,考查學(xué)生的計(jì)算能力,是一道基礎(chǔ)題。20、(1);=.(2)【解題分析】試題分析:(1)先根據(jù)偶次根式非負(fù)得不等式,解不等式得A,B,再結(jié)合數(shù)軸求交,并,補(bǔ)(2)先根據(jù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年湖北電力建設(shè)第一工程公司招聘筆試參考題庫含答案解析
- 2025年度個(gè)人信用擔(dān)保裝修借款合同范本3篇
- 2025年個(gè)人金融理財(cái)產(chǎn)品投資合同4篇
- 2025年度油氣輸送鋼管租賃合作合同2篇
- 2025年度個(gè)人農(nóng)田科技種植項(xiàng)目合作協(xié)議4篇
- 2025版二手房免稅托管與租賃一體化服務(wù)合同
- 2025版協(xié)議離婚全程法律服務(wù)及婚姻財(cái)產(chǎn)分割合同3篇
- 2025年度二零二五年度鋼廠廢鋼再生產(chǎn)品銷售合同2篇
- 2025版新能源電池生產(chǎn)承包經(jīng)營合同示范文本3篇
- 2025-2030全球叉車機(jī)器人行業(yè)調(diào)研及趨勢分析報(bào)告
- 春節(jié)拜年的由來習(xí)俗來歷故事
- 2023年河北省中考數(shù)學(xué)試卷(含解析)
- 通信電子線路(哈爾濱工程大學(xué))智慧樹知到課后章節(jié)答案2023年下哈爾濱工程大學(xué)
- 《公路勘測細(xì)則》(C10-2007 )【可編輯】
- 皮膚惡性黑色素瘤-疾病研究白皮書
- 從心理學(xué)看現(xiàn)代家庭教育課件
- C語言程序設(shè)計(jì)PPT(第7版)高職完整全套教學(xué)課件
- 頭頸外科臨床診療指南2021版
- 大國重器北斗系統(tǒng)
- 網(wǎng)球運(yùn)動(dòng)知識(shí)教育PPT模板
- 防火墻漏洞掃描基礎(chǔ)知識(shí)
評論
0/150
提交評論