內(nèi)蒙古自治區(qū)赤峰市第二中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末考試試題含解析_第1頁
內(nèi)蒙古自治區(qū)赤峰市第二中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末考試試題含解析_第2頁
內(nèi)蒙古自治區(qū)赤峰市第二中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末考試試題含解析_第3頁
內(nèi)蒙古自治區(qū)赤峰市第二中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末考試試題含解析_第4頁
內(nèi)蒙古自治區(qū)赤峰市第二中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末考試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

內(nèi)蒙古自治區(qū)赤峰市第二中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末考試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.?dāng)?shù)列{an}的通項公式an=,若{an}前n項和為24,則n為().A.25 B.576 C.624 D.6252.已知平面平面,,點,,直線,直線,直線,,則下列四種位置關(guān)系中,不一定成立的是()A. B. C. D.3.化簡的結(jié)果是()A. B.C. D.4.設(shè)等比數(shù)列的前項和為,若則()A. B. C. D.5.“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學(xué)方法計算出半音比例,為這個理論的發(fā)展做出了重要貢獻十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它的前一個單音的頻率的比都等于若第一個單音的頻率為,則第八個單音的頻率為()A. B. C. D.6.已知向量,,若,則()A. B. C. D.7.為了調(diào)查老師對微課堂的了解程度,某市擬采用分層抽樣的方法從,,三所中學(xué)抽取60名教師進行調(diào)查,已知,,三所學(xué)校中分別有180,270,90名教師,則從學(xué)校中應(yīng)抽取的人數(shù)為()A.10 B.12 C.18 D.248.我國古代數(shù)學(xué)名著九章算術(shù)記載:“芻甍者,下有袤有廣,而上有袤無丈芻,草也;甍,屋蓋也”翻譯為:“底面有長有寬為矩形,頂部只有長沒有寬為一條棱芻甍字面意思為茅草屋頂”如圖,為一芻甍的三視圖,其中正視圖為等腰梯形,側(cè)視圖為等腰三角形則它的體積為A. B.160 C. D.649.下列函數(shù)中最小值為4的是()A. B.C. D.10.已知定義域的奇函數(shù)的圖像關(guān)于直線對稱,且當(dāng)時,,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè),,,則,,從小到大排列為______12.中,,,,則______.13.把二進制數(shù)1111(2)化為十進制數(shù)是______.14.在中,,,,則的面積等于______.15.在中,,過直角頂點作射線交線段于點,則的概率為______.16.從原點向直線作垂線,垂足為點,則的方程為_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,角,,所對的邊為,,,向量與向量共線.(1)若,求的值;(2)若為邊上的一點,且,若為的角平分線,求的取值范圍.18.已知函數(shù)是指數(shù)函數(shù).(1)求的表達式;(2)判斷的奇偶性,并加以證明(3)解不等式:.19.針對國家提出的延遲退休方案,某機構(gòu)進行了網(wǎng)上調(diào)查,所有參與調(diào)查的人中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如下表所示:支持保留不支持歲以下歲以上(含歲)(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個人,已知從持“不支持”態(tài)度的人中抽取了人,求的值;(2)在接受調(diào)查的人中,有人給這項活動打出的分數(shù)如下:,,,,,,,,,,把這個人打出的分數(shù)看作一個總體,從中任取一個數(shù),求該數(shù)與總體平均數(shù)之差的絕對值超過的概率.20.一個盒子中裝有4張卡片,每張卡片上寫有1個數(shù)字,數(shù)字分別是1、2、3、4,現(xiàn)從盒子中隨機抽取卡片.(Ⅰ)若一次從中隨機抽取3張卡片,求3張卡片上數(shù)字之和大于或等于7的概率;(Ⅱ)若第一次隨機抽取1張卡片,放回后再隨機抽取1張卡片,求兩次抽取的卡片中至少一次抽到數(shù)字2的概率.21.已知三棱柱(如圖所示),底面為邊長為2的正三角形,側(cè)棱底面,,為的中點.(1)求證:平面;(2)若為的中點,求證:平面;(3)求三棱錐的體積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】an==-(),前n項和Sn=-[(1-)+(-)]+…+()]=-1=24,故n=624.故選C.2、D【解題分析】

平面外的一條直線平行平面內(nèi)的一條直線則這條直線平行平面,若兩平面垂直則一個平面內(nèi)垂直于交線的直線垂直另一個平面,主要依據(jù)這兩個定理進行判斷即可得到答案.【題目詳解】如圖所示:由于,,,所以,又因為,所以,故A正確,由于,,所以,故B正確,由于,,在外,所以,故C正確;對于D,雖然,當(dāng)不一定在平面內(nèi),故它可以與平面相交、平行,不一定垂直,所以D不正確;故答案選D【題目點撥】本題考查線面平行、線面垂直、面面垂直的判斷以及性質(zhì)應(yīng)用,要求熟練掌握定理是解題的關(guān)鍵.3、D【解題分析】

確定角的象限,結(jié)合三角恒等式,然后確定的符號,即可得到正確選項.【題目詳解】因為為第二象限角,所以,故選D.【題目點撥】本題是基礎(chǔ)題,考查同角三角函數(shù)的基本關(guān)系式,象限三角函數(shù)的符號,考查計算能力,常考題型.4、B【解題分析】

根據(jù)等比數(shù)列中前項和的“片段和”的性質(zhì)求解.【題目詳解】由題意得,在等比數(shù)列中,成等比數(shù)列,即成等比數(shù)列,∴,解得.故選B.【題目點撥】設(shè)等比數(shù)列的前項和為,則仍成等比數(shù)列,即每個項的和仍成等比數(shù)列,應(yīng)用時要注意使用的條件是數(shù)列的公比.利用此結(jié)論解題可簡化運算,提高解題的效率.5、B【解題分析】

根據(jù)等比數(shù)列通項公式,求得第八個單音的頻率.【題目詳解】根據(jù)等比數(shù)列通項公式可知第八個單音的頻率為.故選:B.【題目點撥】本小題主要考查等比數(shù)列的通項公式,考查中國古代數(shù)學(xué)文化,屬于基礎(chǔ)題.6、B【解題分析】

∵,∴.∴,即,∴,,故選B.【考點定位】向量的坐標(biāo)運算7、A【解題分析】

按照分層抽樣原則,每部分抽取的概率相等,按比例分配給每部分,即可求解.【題目詳解】,,三所學(xué)校教師總和為540,從中抽取60人,則從學(xué)校中應(yīng)抽取的人數(shù)為人.故選:A.【題目點撥】本題考查分層抽樣抽取方法,按比例分配是解題的關(guān)鍵,屬于基礎(chǔ)題.8、A【解題分析】

分析:由三視圖可知該芻甍是一個組合體,它由成一個直三棱柱和兩個全等的四棱錐組成,根據(jù)三視圖中的數(shù)據(jù)可得其體積.詳解:由三視圖可知該芻甍是一個組合體,它由成一個直三棱柱和兩個全等的四棱錐組成,根據(jù)三視圖中的數(shù)據(jù),求出棱錐與棱柱的體積相加即可,,故選A.點睛:本題利用空間幾何體的三視圖重點考查學(xué)生的空間想象能力和抽象思維能力,屬于難題.三視圖問題是考查學(xué)生空間想象能力最常見題型,也是高考熱點.觀察三視圖并將其“翻譯”成直觀圖是解題的關(guān)鍵,不但要注意三視圖的三要素“高平齊,長對正,寬相等”,還要特別注意實線與虛線以及相同圖形的不同位置對幾何體直觀圖的影響,對簡單組合體三視圖問題,先看俯視圖確定底面的形狀,根據(jù)正視圖和側(cè)視圖,確定組合體的形狀.9、C【解題分析】

對于A和D選項不能保證基本不等式中的“正數(shù)”要求,對于B選項不能保證基本不等式中的“相等”要求,即可選出答案.【題目詳解】對于A,當(dāng)時,顯然不滿足題意,故A錯誤.對于B,,,.當(dāng)且僅當(dāng),即時,取得最小值.但無解,故B錯誤.對于D,當(dāng)時,顯然不滿足題意,故D錯誤.對于C,,,.當(dāng)且僅當(dāng),即時,取得最小值,故C正確.故選:C【題目點撥】本題主要考查基本不等式,熟練掌握基本不等式的步驟為解題的關(guān)鍵,屬于中檔題.10、D【解題分析】

根據(jù)函數(shù)的圖像關(guān)于直線對稱可得,再結(jié)合奇函數(shù)的性質(zhì)即可得出答案.【題目詳解】解:∵函數(shù)的圖像關(guān)于直線對稱,∴,∴,∵奇函數(shù)滿足,當(dāng)時,,∴,故選:D.【題目點撥】本題主要考查函數(shù)的奇偶性與對稱性的綜合應(yīng)用,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

首先利用輔助角公式,半角公式,誘導(dǎo)公式分別求出,,的值,然后結(jié)合正弦函數(shù)的單調(diào)性對,,排序即可.【題目詳解】由題知,,,因為正弦函數(shù)在上單調(diào)遞增,所以.故答案為:.【題目點撥】本題考查了輔助角公式,半角公式,誘導(dǎo)公式,正弦函數(shù)的單調(diào)區(qū)間,屬于基礎(chǔ)題.12、【解題分析】

根據(jù),得到的值,再由余弦定理,得到的值.【題目詳解】因為,所以,在中,,,由余弦定理得.所以.故答案為:【題目點撥】本題考查二倍角的余弦公式,余弦定理解三角形,屬于簡單題.13、.【解題分析】

由二進制數(shù)的定義可將化為十進制數(shù).【題目詳解】由二進制數(shù)的定義可得,故答案為:.【題目點撥】本題考查二進制數(shù)化十進制數(shù),考查二進制數(shù)的定義,考查計算能力,屬于基礎(chǔ)題.14、【解題分析】

先用余弦定理求得,從而得到,再利用正弦定理三角形面積公式求解.【題目詳解】因為在中,,,由余弦定理得,所以由正弦定理得故答案為:【題目點撥】本題主要考查正弦定理和余弦定理的應(yīng)用,還考查了運算求解的能力,屬于中檔題.15、【解題分析】

設(shè),求出的長,由幾何概型概率公式計算.【題目詳解】設(shè),由題意得,,∴的概率是.故答案為:.【題目點撥】本題考查幾何概型,考查長度型幾何概型.掌握幾何概型概率公式是解題關(guān)鍵.16、.【解題分析】

先求得直線的斜率,由直線垂直時的斜率關(guān)系可求得直線的斜率.再根據(jù)點斜式即可求得直線的方程.【題目詳解】從原點向直線作垂線,垂足為點則直線的斜率由兩條垂直直線的斜率關(guān)系可知根據(jù)點斜式可得直線的方程為化簡得故答案為:【題目點撥】本題考查了直線垂直時的斜率關(guān)系,點斜式方程的應(yīng)用,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)32;(2)【解題分析】

由兩向量坐標(biāo)以及向量共線,結(jié)合正弦定理,化簡可得(1)由,,代入原式化簡,即可得到答案;(2)在和在中,利用正弦定理,化簡可得,,代入原式,化簡即可得到,利用三角形的內(nèi)角范圍結(jié)合三角函數(shù)的值域,即可求出的取值范圍.【題目詳解】向量與向量共線所以,由正弦定理得:.即,由于在中,,則,所以,由于,則.(1),.(2)因為,為的角平分線,所以,在中,,因為,所以,所以在中,,因為,所以,所以,則,因為,所以,所以,即的取值范圍為.【題目點撥】本題主要考查向量共線、正弦定理、二倍角公式、三角函數(shù)的值域等知識,考查學(xué)生轉(zhuǎn)化與求解能力,考查學(xué)生基本的計算能力,有一定綜合性.18、(1)(2)見證明;(3)【解題分析】

(1)根據(jù)指數(shù)函數(shù)定義得到,檢驗得到答案.(2),判斷關(guān)系得到答案.(3)利用函數(shù)的單調(diào)性得到答案.【題目詳解】解:(1)∵函數(shù)是指數(shù)函數(shù),且,∴,可得或(舍去),∴;(2)由(1)得,∴,∴,∴是奇函數(shù);(3)不等式:,以2為底單調(diào)遞增,即,∴,解集為.【題目點撥】本題考查了函數(shù)的定義,函數(shù)的奇偶性,解不等式,意在考查學(xué)生的計算能力.19、(1)120;(2).【解題分析】

(1)參與調(diào)查的總?cè)藬?shù)為20000,其中從持“不支持”態(tài)度的人數(shù)5000中抽取了30人,由此能求出n.(2)總體的平均數(shù)為9,與總體平均數(shù)之差的絕對值超過0.6的數(shù)有8.2,8.3,9.7,由此能求出任取1個數(shù)與總體平均數(shù)之差的絕對值超過0.6的概率.【題目詳解】(1)參與調(diào)查的總?cè)藬?shù)為8000+4000+2000+1000+2000+3000=20000,其中不支持態(tài)度的人數(shù)2000+3000=5000中抽取了30人,所以n=.(2)總體的平均數(shù)與總體平均數(shù)之差的絕對值超過0.6的數(shù)有8.2,8.3,9.7,所以任取一個數(shù)與總體平均數(shù)之差的絕對值超過0.6的概率.【題目點撥】本題主要考查了樣本容量的求法,分層抽樣,用列舉法求古典概型的概率,屬于中檔題.20、(1)(2)【解題分析】

古典概型要求能夠列舉出所有事件和發(fā)生事件的個數(shù),本題可以列舉出所有事件,概率問題同其他的知識點結(jié)合在一起,實際上是以概率問題為載體,主要考查的是另一個知識點(1)由題意知本題是一個古典概型,試驗包含的所有事件是任取三張卡片,三張卡片上的數(shù)字全部可能的結(jié)果,可以列舉出,而滿足條件的事件數(shù)字之和大于7的,可以從列舉出的結(jié)果中看出.(2)列舉出每次抽1張,連續(xù)抽取兩張全部可能的基本結(jié)果,而滿足條件的事件是兩次抽取中至少一次抽到數(shù)字3,從前面列舉出的結(jié)果中找出來.解:(Ⅰ)設(shè)A表示事件“抽取3張卡片上的數(shù)字之和大于或等于7”,任取三張卡片,三張卡片上的數(shù)字全部可能的結(jié)果是(1、2、3),(1、2、4),(1、3、4),(2、3、4),共4種,數(shù)字之和大于或等于7的是(1、2、4),(1、3、4),(2、3、4),共3種,所以P(A)=.(Ⅱ)設(shè)B表示事件“至少一次抽到2”,第一次抽1張,放回后再抽取1張的全部可能結(jié)果為:(1、1)(1、2)(1、3)(1、4)(2、1)(2、2)(2、3)(2、4)(3、1)(3、2)(3、3)(3、4)(4、1)(4、2)(4、3)(4、4),共16個事件B包含的結(jié)果有(1、2)(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論