2024屆浙江省桐鄉(xiāng)市第一中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
2024屆浙江省桐鄉(xiāng)市第一中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
2024屆浙江省桐鄉(xiāng)市第一中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
2024屆浙江省桐鄉(xiāng)市第一中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
2024屆浙江省桐鄉(xiāng)市第一中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆浙江省桐鄉(xiāng)市第一中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.甲、乙兩隊準備進行一場籃球賽,根據(jù)以往的經(jīng)驗甲隊獲勝的概率是,兩隊打平的概率是,則這次比賽乙隊不輸?shù)母怕适牵ǎ〢.- B. C. D.2.的內(nèi)角的對邊分別為,分別根據(jù)下列條件解三角形,其中有兩解的是()A.B.C.D.3.若偶函數(shù)在上是增函數(shù),則()A. B.C. D.不能確定4.函數(shù),,若對任意,存在,使得成立,則實數(shù)m的取值范圍是()A. B. C. D.5.已知等比數(shù)列中,,數(shù)列是等差數(shù)列,且,則()A.3 B.6 C.7 D.86.若平面平面,直線,直線,則關(guān)于直線、的位置關(guān)系的說法正確的是()A. B.、異面 C. D.、沒有公共點7.在鈍角三角形ABC中,若B=45°,a=2,則邊長cA.(1,2) B.(0,1)∪(8.函數(shù)的零點所在的區(qū)間為()A. B. C. D.9.若,則()A. B. C. D.10.已知向量,,若,則與的夾角為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若函數(shù),則__________.12.計算:=_______________.13.若八個學(xué)生參加合唱比賽的得分為87,88,90,91,92,93,93,94,則這組數(shù)據(jù)的方差是______14.在等差數(shù)列中,,當最大時,的值是________.15.關(guān)于的不等式,對于恒成立,則實數(shù)的取值范圍為_______.16.已知向量,若向量與垂直,則等于_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.的內(nèi)角所對的邊分別為,向量,若.(1)求角的大小;(2)若,求的值.18.在平面直角坐標系中,已知A(-1,0),B(2,0),動點M(x,y)滿足MAMB=12,設(shè)動點(1)求動點M的軌跡方程,并說明曲線C是什么圖形;(2)過點1,2的直線l與曲線C交于E,F兩點,若|EF|=455(3)設(shè)P是直線x+y+8=0上的點,過P點作曲線C的切線PG,PH,切點為G,H,設(shè)C'(-2,0),求證:過19.已知數(shù)列滿足:,,.(1)求證:數(shù)列為等差數(shù)列,并求出數(shù)列的通項公式;(2)記(),用數(shù)學(xué)歸納法證明:,20.已知向量,,,.(Ⅰ)若四邊形是平行四邊形,求,的值;(Ⅱ)若為等腰直角三角形,且為直角,求,的值.21.已知數(shù)列前n項和,點在函數(shù)的圖象上.(1)求的通項公式;(2)設(shè)數(shù)列的前n項和為,不等式對任意的正整數(shù)恒成立,求實數(shù)a的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】

因為“甲隊獲勝”與“乙隊不輸”是對立事件,對立事件的概率之和為1,進而即可求出結(jié)果.【題目詳解】由題意,“甲隊獲勝”與“乙隊不輸”是對立事件,因為甲隊獲勝的概率是,所以,這次比賽乙隊不輸?shù)母怕适?故選C【題目點撥】本題主要考查對立事件的概率問題,熟記對立事件的性質(zhì)即可,屬于??碱}型.2、D【解題分析】

運用正弦定理公式,可以求出另一邊的對角正弦值,最后還要根據(jù)三角形的特點:“大角對大邊”進行合理排除.【題目詳解】A.,由所以不存在這樣的三角形.B.,由且所以只有一個角BC.中,同理也只有一個三角形.D.中此時,所以出現(xiàn)兩個角符合題意,即存在兩個三角形.所以選擇D【題目點撥】在直接用正弦定理求另外一角中,求出后,記得一定要去判斷是否會出現(xiàn)兩個角.3、B【解題分析】

根據(jù)偶函數(shù)性質(zhì)與冪函數(shù)性質(zhì)可得.【題目詳解】偶函數(shù)在上是增函數(shù),則它在上是減函數(shù),所以.故選:B.【題目點撥】本題考查冪函數(shù)的性質(zhì),考查偶函數(shù)性質(zhì),屬于基礎(chǔ)題.4、D【解題分析】,當時,對于∵對任意,存在,使得成立,,解得實數(shù)的取值范圍是.

故選D.【題目點撥】本題考查三角函數(shù)恒等變換,其中解題時問題轉(zhuǎn)化為求三角函數(shù)的值域并利用集合關(guān)系是解決問題的關(guān)鍵,5、D【解題分析】

由等比數(shù)列的性質(zhì)求得,再由等差數(shù)列的性質(zhì)可得結(jié)果.【題目詳解】因為等比數(shù)列,且,解得,數(shù)列是等差數(shù)列,則,故選:D.【題目點撥】本題主要考查等比數(shù)列與等差數(shù)列的下標性質(zhì),屬于基礎(chǔ)題.解等差數(shù)列問題要注意應(yīng)用等差數(shù)列的性質(zhì)().6、D【解題分析】

根據(jù)條件知:關(guān)于直線、的位置關(guān)系異面或者平行,故沒有公共點.【題目詳解】若平面平面,直線,直線,則關(guān)于直線、的位置關(guān)系是異面或者平行,所以、沒有公共點.故答案選D【題目點撥】本題考查了直線,平面的位置關(guān)系,意在考查學(xué)生的空間想象能力.7、D【解題分析】試題分析:解法一:,由三角形正弦定理誘導(dǎo)公式有,利用三角恒等公式能夠得到,當A為銳角時,0°<A<45°,,即,當A為鈍角時,90°<A<135°,,綜上所述,;解法二:利用圖形,如圖,,,當點A(D)在線段BE上時(不含端點B,E),為鈍角,此時;當點A在線段EF上時,為銳角三角形或直角三角形;當點A在射線FG(不含端點F)上時,為鈍角,此時,所以c的取值范圍為.考點:解三角形.【思路點睛】解三角形需要靈活運用正余弦定理以及三角形的恒等變形,在解答本題時,利用三角形內(nèi)角和,將兩角化作一角,再利用正弦定理即可列出邊長c與角A的關(guān)系式,根據(jù)角A的取值范圍即可求出c的范圍,本題亦可利用物理學(xué)中力的合成,合力的大小來確定c的大小,正如解法二所述.8、C【解題分析】

分別將選項中的區(qū)間端點值代回,利用零點存在性定理判斷即可【題目詳解】由題函數(shù)單調(diào)遞增,,,則,故選:C【題目點撥】本題考查利用零點存在性定理判斷零點所在區(qū)間,屬于基礎(chǔ)題9、C【解題分析】

由及即可得解.【題目詳解】由,可得.故選C.【題目點撥】本題主要考查了同角三角函數(shù)的基本關(guān)系及二倍角公式,屬于基礎(chǔ)題.10、D【解題分析】∵,,⊥,∴,解得.∴.∴,又.設(shè)向量與的夾角為,則.又,∴.選D.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

根據(jù)分段函數(shù)的解析式先求,再求即可.【題目詳解】因為,所以.【題目點撥】本題主要考查了分段函數(shù)求值問題,解題的關(guān)鍵是將自變量代入相應(yīng)范圍的解析式中,屬于基礎(chǔ)題.12、【解題分析】試題分析:考點:兩角和的正切公式點評:本題主要考查兩角和的正切公式變形的運用,抓住和角是特殊角,是解題的關(guān)鍵.13、1.1【解題分析】

先求出這組數(shù)據(jù)的平均數(shù),由此能求出這組數(shù)據(jù)的方差.【題目詳解】八個學(xué)生參加合唱比賽的得分為87,88,90,91,92,93,93,94,則這組數(shù)據(jù)的平均數(shù)為:(87+88+90+91+92+93+93+94)=91,∴這組數(shù)據(jù)的方差為:S2[(87﹣91)2+(88﹣91)2+(90﹣91)2+(91﹣91)2+(92﹣91)2+(93﹣91)2+(93﹣91)2+(94﹣91)2]=1.1.故答案為1.1.【題目點撥】本題考查方差的求法,考查平均數(shù)、方差的性質(zhì)等基礎(chǔ)知識,考查了推理能力與計算能力,是基礎(chǔ)題.14、6或7【解題分析】

利用等差數(shù)列的前項和公式,由,可以得到和公差的關(guān)系,利用二次函數(shù)的性質(zhì)可以求出最大時,的值.【題目詳解】設(shè)等差數(shù)列的公差為,,,所以,因為,,所以當或時,有最大值,因此當?shù)闹凳?或7.【題目點撥】本題考查了等差數(shù)列的前項和公式,考查了等差數(shù)列的前項和最大值問題,運用二次函數(shù)的性質(zhì)是解題的關(guān)鍵.15、或【解題分析】

利用換元法令,則對任意的恒成立,再對分兩種情況討論,令求出函數(shù)的最小值,即可得答案.【題目詳解】令,則對任意的恒成立,(1)當,即時,上式顯然成立;(2)當,即時,令①當時,,顯然不成立,故不成立;②當時,,∴解得:綜上所述:或.故答案為:或.【題目點撥】本題考查含絕對值函數(shù)的最值問題,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想、數(shù)形結(jié)合思想,考查邏輯推理能力和運算求解能力,求解時注意分段函數(shù)的最值求解.16、2【解題分析】

根據(jù)向量的數(shù)量積的運算公式,列出方程,即可求解.【題目詳解】由題意,向量,因為向量與垂直,所以,解得.故答案為:2.【題目點撥】本題主要考查了向量的坐標運算,以及向量的垂直關(guān)系的應(yīng)用,著重考查了推理與運算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)2【解題分析】

(1)根據(jù)向量的數(shù)量積定義,結(jié)合余弦的倍角公式,即可求得;(2)由余弦定理,及(1)中所求角度,即可直接求得.【題目詳解】(1)由已知易得:所以,又故.(2)由及余弦定理可得:所以,所以得:(舍)所以.【題目點撥】本題考查余弦定理,余弦的倍角公式,涉及向量的數(shù)量積,屬基礎(chǔ)題.18、(1)動點M的軌跡方程為(x+2)2+y2=4,曲線C是以(-2,0)為圓心,2為半徑的圓(2)l的方程為2x-y=0或【解題分析】

(1)利用兩點間的距離公式并結(jié)合條件MAMB=12,化簡得出曲線C的方程,根據(jù)曲線(2)根據(jù)幾何法計算出圓心到直線的距離d=455,對直線l分兩種情況討論,一是斜率不存在,一是斜率存在,結(jié)合圓心到直線的距離d=(3)設(shè)點P的坐標為m,-m-8,根據(jù)切線的性質(zhì)得出PG⊥GC',從而可得出過G、P、C'x2【題目詳解】(1)由題意得(x+1)2+y所以動點M的軌跡方程為(x+2)2曲線C是以(-2,0)為圓心,2為半徑的圓;(2)①當直線l斜率不存在時,x=1,不成立;②當直線l的斜率存在時,設(shè)l:y-2=k(x-1),即kx-y+2-k=0,圓心C(-2,0)到l的距離為d=-3k+21+∴d2=165=(2-3k)2∴l(xiāng)的方程為2x-y=0或2x-29y+56=0;(3)證明:∵P在直線x+y+8=0上,則設(shè)P(m,-m-8)∵C'為曲線C的圓心,由圓的切線的性質(zhì)可得PG⊥GC',∴經(jīng)過G,P,C'的三點的圓是以PC'為直徑的圓,則方程為(x+2)(x-m)+y(y+m+8)=0,整理可得x2令x2+y解得x=-2y=0或則有經(jīng)過G,P,C'三點的圓必過定點,所有定點的坐標為(-2,0),(-5,-3).【題目點撥】本題考查動點軌跡方程的求法,考查直線截圓所得弦長的計算以及動圓所過定點的問題,解決圓所過定點問題,關(guān)鍵是要將圓的方程求出來,對帶參數(shù)的部分提公因式,轉(zhuǎn)化為方程組求公共解問題.19、(1)證明見解析,;(2)見解析【解題分析】

(1)定義法證明:;(2)采用數(shù)學(xué)歸納法直接證明(注意步驟).【題目詳解】由可知:,則有,即,所以為等差數(shù)列,且首相為,公差,所以,故;(2),當時,成立;假設(shè)當時,不等式成立則:;當時,,因為,所以,則,故時不等式成立,綜上可知:.【題目點撥】數(shù)學(xué)歸納法的一般步驟:(1)命題成立;(2)假設(shè)命題成立;(3)證明命題成立(一定要借助假設(shè),否則不能稱之為數(shù)學(xué)歸納法).20、(Ⅰ);(Ⅱ)或.【解題分析】

(Ⅰ)由得到x,y的方程組,解方程組即得x,y的值;(Ⅱ)由題得和,解方程組即得,的值.【題目詳解】(Ⅰ),,,,,由,,;(Ⅱ),,為直角,則,,又,,再由,解得:或.【題目點撥】本題主要考查平面向量的數(shù)量積運算和模的運算,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.21、(1);(2).【解題分析】試題分析:(1)將點的坐標代入函數(shù)的方程得到.利用,可求得數(shù)列的通項公式為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論