版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022學(xué)年福建省福州黎明中學(xué)高二上學(xué)期期中考數(shù)學(xué)試題一、單選題:本題共8小題,每小題5分,共40分。在每小題給出的選項(xiàng)中,只有一項(xiàng)是符合題M四點(diǎn)共面的充要條件是()4.方程表示的曲線關(guān)于直線成軸對稱圖形,則A.B.C.D.D+E+F=0=2A.B.二、多選題:本題共4小題,共20分。在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目要求。全部選對的得59.以下說法正確的是()A.若向量是空間的一個(gè)基底,則也是空間的一個(gè)基底10.以下說法錯(cuò)誤的是()B.經(jīng)過點(diǎn)且在x軸和y軸上截距都相等的直線方程為D.若兩直線與A.B.C.D.y=4A.直線與AC所成的角可能是三、填空題:本題共4小題,每小題5分,共20分。.ABCDl平面ABEF,梯形ABCD,梯形ABEF的高分別為3,7,且則.__________17.本小題10分)18.本小題12分);19.本小題12分)(長.20.本小題12分),分別為線段AB,BC(21.本小題12分)CD//FG且CD=2FG=2.(若CF與平面ABCD所成角的正切值為2,求直線AD到平面EBC的距離.22.本小題12分)(II)求圓心C的軌跡方程.圓相交于兩點(diǎn),是否存在實(shí)數(shù)a使得若存在,求出實(shí)數(shù)a的值;本題考查直線的斜率與傾斜角,屬于簡單題.根據(jù)直線的斜率求傾斜角即可.所以傾斜角為45°.故選B.本題主要考查點(diǎn)與圓的位置關(guān)系求參數(shù),屬于基礎(chǔ)題.故選A.本題考查空間向量共面定理,屬基礎(chǔ)題.解:由題意A,B,C三點(diǎn)不共線,點(diǎn)O是平面ABC外任意一點(diǎn),故選C.本題考查圓的一般式方程,圓的對稱性的應(yīng)用,是基礎(chǔ)題.所以D+E=0.故選A.本題考查空間向量定理及其應(yīng)用.利用向量加法和減法的運(yùn)算得出答案,屬基礎(chǔ)題.利用向量的線性運(yùn)算直接求解即可.,故選B.本題考查的是直線的傾斜角與斜率的關(guān)系,是基礎(chǔ)題.根據(jù)斜率范圍,再結(jié)合正切函數(shù)得到傾斜角范圍.解:k=tanae[-3,1)故選A.本題考查兩圓的位置關(guān)系,屬于基礎(chǔ)題.化兩圓的一般式方程為標(biāo)準(zhǔn)方程,求出圓心和半徑,由兩圓心間的距離等于半徑和列式求得m值.故選C.本題考查空間向量的數(shù)量積,三棱錐的外接球問題,屬于中檔題.解:由題意以A為坐標(biāo)原點(diǎn),分別以AF、AB、AD為x,y,z軸建立空間直角坐標(biāo)系,四邊形ABCD是正方形,所以,平面ABCD,所以平面ABG,故選C.本題考查空間向量基底的概念、空間向量與空間直線、平面的平行、垂直間的關(guān)系,屬于基礎(chǔ)題.解:對于A:由向量不在該平面內(nèi),顯然一個(gè)基底,故A正確;誤.本題考查兩直線平行與垂直的應(yīng)用,截距式和兩點(diǎn)式方程的應(yīng)用,屬于一般題.利用充要條件結(jié)合兩直線垂直的判定即可判斷A;分情況討論直線是否過原點(diǎn)進(jìn)而判斷利用兩點(diǎn)式直線綜上所述,經(jīng)過點(diǎn)且在x軸和y軸上截距都相等的直線方程為或者故B錯(cuò)故選ABC.本題主要考查求圓的切線方程,點(diǎn)到直線的距離公式,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.分切線的斜率存在、不存在兩種情況,分別利用圓的切線性質(zhì),求得圓的切線方程.故此時(shí)切線方程為4c-3y+4=0.故選BC.本題考查空間中異面直線所成角、棱錐的體積、動(dòng)點(diǎn)截面等基礎(chǔ)知識,考查運(yùn)算求思想,是較難題.運(yùn)動(dòng)的截面,可得截面可能三角形和四邊形,但不是直角三角形.第12頁,共20頁但不會(huì)為直角三角形.故D錯(cuò)誤.故選BC.本題考查的知識點(diǎn)是二面角的平面角及求法,屬基礎(chǔ)題.根據(jù)已知兩個(gè)平面的法向量,代入向量夾角公式,可以求出兩個(gè)向量的夾角,進(jìn)而所以??,其補(bǔ)角為135.135。.本題考查函數(shù)的最值問題,考查推理能力和計(jì)算能力,屬于中檔題.求出兩個(gè)圓的圓心與半徑,設(shè)出動(dòng)圓的圓心坐標(biāo),判斷動(dòng)圓的圓心的軌跡滿足程.2a=122a=12c=3本題考查了面面垂直的性質(zhì),空間向量的數(shù)量積,屬于中檔題.,即可得平面平面ABEF平面平面,故平面ABEF,AB,平面ABEF,故AN,AB,AM兩兩垂直,故答案為14.直線BC邊的中點(diǎn)坐標(biāo)為(1,1)w+y-4=0.,【解析】本題考查點(diǎn)斜式直線方程、兩直線垂直的判定及應(yīng)用,兩點(diǎn)之間的距離公式、點(diǎn)到直線距離公式、三角形面積計(jì)算公式,屬于基礎(chǔ)題.(△ABC的面積S.(I):M是,【解析】本題考查空間向量的線性運(yùn)算,屬基礎(chǔ)題.結(jié)果.(,【解析】本題考查直線恒過定點(diǎn)問題,直線與圓的位置關(guān)系,屬于中檔題.(系,以及點(diǎn)到直線的距離公式求解即可..·.pclDE··pcncD=C,且平面PCD,=-lo兩法向量夾角的余弦值【解析】本題考查二面角,涉及直線與平面垂直的判定,建系化歸為平面法向量的夾角是解決問題的關(guān)鍵,屬中檔題..DGl平面ABCD,以D為坐標(biāo)原點(diǎn),分別以DA、DC、DG所在直線為x、y、z軸建立空間直角坐標(biāo)系..AD平面EBC,則直線AD到平面EBC的距離等于D到平面EBC的距離.,B=(1,-2,2).,【解析】本題考查利用空間向量證明直線與平面平行,訓(xùn)練了利用空間向量法求點(diǎn)到平面的距離,考查空間想象能力與思維能力,考查
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 五金行業(yè)采購工作總結(jié)
- 科學(xué)實(shí)驗(yàn)活動(dòng)的班級設(shè)計(jì)計(jì)劃
- IT行業(yè)品牌推廣案例
- 餐廳設(shè)計(jì)師設(shè)計(jì)餐廳布局選擇燈具
- 動(dòng)力行業(yè)工程師工作總結(jié)
- 跑步行業(yè)跑步技巧培訓(xùn)感悟
- 四年級班主任期中工作總結(jié)嚴(yán)謹(jǐn)教學(xué)溫暖關(guān)愛
- 濕地探秘開展自然教育實(shí)踐計(jì)劃
- 托班思維搭建課程設(shè)計(jì)
- 夷陵中學(xué)屆高三級月月考語文試題
- 初中動(dòng)點(diǎn)問題題目
- 職業(yè)技術(shù)學(xué)校農(nóng)產(chǎn)品加工與質(zhì)量檢測專業(yè)調(diào)研報(bào)告
- 合伙人權(quán)益糾紛解決合同
- 理發(fā)店承包方案
- 機(jī)電材料見證取樣復(fù)試
- 二線干部工作總結(jié)
- 蟲害防治年終報(bào)告總結(jié)
- 2024海南省圖書館公開招聘財(cái)政定額補(bǔ)貼人員15人(一)高頻考題難、易錯(cuò)點(diǎn)模擬試題(共500題)附帶答案詳解
- 心理統(tǒng)計(jì)學(xué)統(tǒng)計(jì)方法
- 北斗創(chuàng)新設(shè)計(jì)導(dǎo)航-知到答案、智慧樹答案
- 【韓國三星在中國的跨文化管理探析-以上海子公司為例5800字】
評論
0/150
提交評論