版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆安徽省宿州市埇橋區(qū)教育集團九年級數(shù)學第一學期期末經(jīng)典模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.《九章算術》中記載一問題如下:“今有共買雞,人出八,盈三;人出七,不足四,問人數(shù)、物價各幾何?”意思是:今有人合伙購物,每人出8錢,會多3錢;每人出7錢,又差4錢,問人數(shù)、物價各多少?設有人,買雞的錢數(shù)為,依題意可列方程組為()A. B.C. D.2.下列圖形中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.3.如果兩個相似三角形對應邊之比是,那么它們的對應中線之比是()A.1:3 B.1:4 C.1:6 D.1:94.在平面直角坐標系xOy中,以點(3,4)為圓心,4為半徑的圓與y軸()A.相交 B.相切 C.相離 D.無法確定5.式子在實數(shù)范圍內(nèi)有意義,則的取值范圍是()A. B. C. D.6.將二次函數(shù)y=x2的圖象沿y軸向上平移2個單位長度,再沿x軸向左平移3個單位長度,所得圖象對應的函數(shù)表達式為()A.y=(x+3)2+2 B.y=(x﹣3)2+2 C.y=(x+2)2+3 D.y=(x﹣2)2+37.如圖,在⊙O中,AE是直徑,半徑OC垂直于弦AB于D,連接BE,若AB=2,CD=1,則BE的長是A.5 B.6 C.7 D.88.如圖,小明在時測得某樹的影長為,時又測得該樹的影長為,若兩次日照的光線互相垂直,則樹的高度為.A.2 B.4 C.6 D.89.關于二次函數(shù)y=2x2+4,下列說法錯誤的是()A.它的開口方向向上 B.當x=0時,y有最大值4C.它的對稱軸是y軸 D.頂點坐標為(0,4)10.若函數(shù)與的圖象如圖所示,則函數(shù)的大致圖象為()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖示,半圓的直徑,,是半圓上的三等分點,點是的中點,則陰影部分面積等于______.12.如圖所示的網(wǎng)格是正方形網(wǎng)格,△和△的頂點都是網(wǎng)格線交點,那么∠∠_________°.13.已知三個邊長分別為2,3,5的正方形如圖排列,則圖中陰影部分的面積為_____.14.將二次函數(shù)化成的形式,則__________.15.已知二次函數(shù)y=x2+2mx+2,當x>2時,y的值隨x值的增大而增大,則實數(shù)m的取值范圍是_____.16.已知關于x的分式方程有一個正數(shù)解,則k的取值范圍為________.17.如圖△ABC中,∠C=90°,AC=8cm,AB的垂直平分線MN交AC于D,連接BD,若cos∠BDC=,則BC的長為_____.18.如圖,分別以等邊三角形的每個頂點為圓心,邊長為半徑,在另兩個頂點之間作一段弧,三段弧圍成的曲邊三角形稱為“勒洛三角形”,若等邊三角形的邊長為2,則“勒洛三角形”的面積為_________.三、解答題(共66分)19.(10分)已知:如圖,在⊙O中,弦交于點,.求證:.20.(6分)A,B,C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機地傳給B,C兩人中的某一人,以后的每一次傳球都是由接球者將球隨機地傳給其余兩人中的某人。請畫樹狀圖,求兩次傳球后,球在A手中的概率.21.(6分)如圖①,BC是⊙O的直徑,點A在⊙O上,AD⊥BC垂足為D,弧AE=弧AB,BE分別交AD、AC于點F、G.(1)判斷△FAG的形狀,并說明理由;(2)如圖②若點E與點A在直徑BC的兩側,BE、AC的延長線交于點G,AD的延長線交BE于點F,其余條件不變(1)中的結論還成立嗎?請說明理由.(3)在(2)的條件下,若BG=26,DF=5,求⊙O的直徑BC.22.(8分)已知反比例函數(shù)y=的圖象與一次函數(shù)y=kx+m的圖象相交于點A(2,1).(1)分別求出這兩個函數(shù)的解析式;(2)當x取什么范圍時,反比例函數(shù)值大于0;(3)若一次函數(shù)與反比例函數(shù)另一交點為B,且縱坐標為﹣4,當x取什么范圍時,反比例函數(shù)值大于一次函數(shù)的值;(4)試判斷點P(﹣1,5)關于x軸的對稱點P′是否在一次函數(shù)y=kx+m的圖象上.23.(8分)如圖,拋物線y=ax2+bx過A(4,0)B(1,3)兩點,點C、B關于拋物線的對稱軸對稱,過點B作直線BH⊥x軸,交x軸于點H(1)求拋物線的解析式.(2)直接寫出點C的坐標,并求出△ABC的面積.(3)點P是拋物線BA段上一動點,當△ABP的面積為3時,求出點P的坐標.24.(8分)在平面直角坐標系xOy(如圖)中,拋物線y=ax2+bx+2經(jīng)過點A(4,0)、B(2,2),與y軸的交點為C.(1)試求這個拋物線的表達式;(2)如果這個拋物線的頂點為M,求△AMC的面積;(3)如果這個拋物線的對稱軸與直線BC交于點D,點E在線段AB上,且∠DOE=45°,求點E的坐標.25.(10分)如圖,海南省三沙市一艘海監(jiān)船某天在黃巖島P附近海域由南向北巡航,某一時刻航行到A處,測得該島在北偏東30°方向,海監(jiān)船以20海里/時的速度繼續(xù)航行,2小時后到達B處,測得該島在北偏東75°方向,求此時海監(jiān)船與黃巖島P的距離BP的長.(結果精確到0.1海里,參考數(shù)據(jù):tan75°≈3.732,sin75°≈0.966,sin15°≈0.259,≈1.414,≈1.732)26.(10分)如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別是A(﹣1,5)、B(﹣2,0)、C(﹣4,3).(1)請在圖中畫出△ABC關于y軸對稱的圖形△A1B1C1:(2)以點O為位似中心,將△ABC縮小為原來的,得到△A2B2C2,請在圖中y軸的左側畫出△A2B2C2,并求出△A2B2C2的面積.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】一方面買雞的錢數(shù)=8人出的總錢數(shù)-3錢,另一方面買雞的錢數(shù)=7人出的總錢數(shù)+4錢,據(jù)此即可列出方程組.【詳解】解:設有人,買雞的錢數(shù)為,根據(jù)題意,得:.【點睛】本題考查的是二元一次方程組的應用,正確理解題意、根據(jù)買雞的總錢數(shù)不變列出方程組是解題關鍵.2、D【分析】根據(jù)中心對稱圖形和軸對稱圖形的定義即可得解.【詳解】A、不是中心對稱圖形,也不是軸對稱圖形,此項錯誤B、是中心對稱圖形,也是軸對稱圖形,此項錯誤C、不是中心對稱圖形,是軸對稱圖形,此項錯誤D、是中心對稱圖形,但不是軸對稱圖形,此項正確故選:D.【點睛】本題考查的是中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.3、A【解析】∵兩個相似三角形對應邊之比是1:3,∴它們的對應中線之比為1:3.故選A.點睛:本題考查相似三角形的性質(zhì),相似三角形的對應邊、對應周長,對應高、中線、角平分線的比,都等于相似比,掌握相似三角形的性質(zhì)及靈活運用它是解題的關鍵.4、A【分析】先找出圓心到y(tǒng)軸的距離,再與圓的半徑進行比較,若圓心到y(tǒng)軸的距離小于半徑,則圓與y軸相交,反之相離,若二者相等則相切故答案為A選項【詳解】根據(jù)題意,我們得到圓心與y軸距離為3,小于其半徑4,所以與y軸的關系為相交【點睛】本題主要考查了圓與直線的位置關系,熟練掌握圓心距與圓到直線距離的大小關系對應的位置關系是關鍵5、C【分析】根據(jù)二次根式有意義的條件進行求解即可.【詳解】由題意得:x-1≥0,解得:x≥1,故選C.【點睛】本題考查了二次根式有意義的條件,熟知二次根式的被開方數(shù)為非負數(shù)是解題的關鍵.6、A【分析】直接利用二次函數(shù)的平移規(guī)律,左加右減,上加下減,進而得出答案.【詳解】解:將二次函數(shù)y=x1的圖象沿y軸向上平移1個單位長度,得到:y=x1+1,再沿x軸向左平移3個單位長度得到:y=(x+3)1+1.故選:A.【點睛】解決本題的關鍵是得到平移函數(shù)解析式的一般規(guī)律:上下平移,直接在函數(shù)解析式的后面上加,下減平移的單位;左右平移,比例系數(shù)不變,在自變量后左加右減平移的單位.7、B【分析】根據(jù)垂徑定理求出AD,根據(jù)勾股定理列式求出半徑,根據(jù)三角形中位線定理計算即可.【詳解】解:∵半徑OC垂直于弦AB,∴AD=DB=AB=在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+()2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故選B【點睛】本題考查的是垂徑定理、勾股定理,掌握垂直于弦的直徑平分這條弦是解題的關鍵8、B【解析】根據(jù)題意,畫出示意圖,易得:Rt△EDC∽Rt△FDC,進而可得;即DC2=ED?FD,代入數(shù)據(jù)可得答案.【詳解】解:根據(jù)題意,作△EFC;樹高為CD,且∠ECF=90°,ED=2,F(xiàn)D=8;∵∠E+∠ECD=∠E+∠CFD=90°∴∠ECD=∠CFD∴Rt△EDC∽Rt△FDC,有;即DC2=ED?FD,代入數(shù)據(jù)可得DC2=16,DC=4;故選:B.【點睛】本題通過投影的知識結合三角形的相似,求解高的大??;是平行投影性質(zhì)在實際生活中的應用.9、B【分析】根據(jù)二次函數(shù)的圖象及性質(zhì)與各項系數(shù)的關系,逐一判斷即可.【詳解】解:A.因為2>0,所以它的開口方向向上,故不選A;B.因為2>0,二次函數(shù)有最小值,當x=0時,y有最小值4,故選B;C.該二次函數(shù)的對稱軸是y軸,故不選C;D.由二次函數(shù)的解析式可知:它的頂點坐標為(0,4),故不選D.故選:B.【點睛】此題考查的是二次函數(shù)的圖象及性質(zhì),掌握二次函數(shù)的圖象及性質(zhì)與各項系數(shù)的關系是解決此題的關鍵.10、A【分析】首先根據(jù)二次函數(shù)及反比例函數(shù)的圖象確定k、b的符號,然后根據(jù)一次函數(shù)的性質(zhì)確定答案即可.【詳解】∵二次函數(shù)的圖象開口向上,對稱軸>0∴a>0,b<0,
又∵反比例函數(shù)的圖形位于二、四象限,∴-k<0,∴k>0
∴函數(shù)y=kx-b的大致圖象經(jīng)過一、二、三象限.故選:
A【點睛】本題考查的是利用反比例函數(shù)和二次函數(shù)的圖象確定一次函數(shù)的系數(shù),然后根據(jù)一次函數(shù)的性質(zhì)確定其大致圖象,確定一次函數(shù)的系數(shù)是解決本題的關鍵.二、填空題(每小題3分,共24分)11、【分析】連接OC、OD,利用同底等高的三角形面積相等可知陰影部分的面積等于扇形OCD的面積,然后計算扇形面積就可.【詳解】連接OC、OD、CD,如圖所示:∵△COD和△CDE等底等高,∴S△COD=S△ECD.∵點C,D為半圓的三等分點,∴∠COD=180°÷3=60°,∴陰影部分的面積=S扇形COD=.故答案為.【點睛】此題主要考查了扇形面積求法,利用已知得出理解陰影部分的面積等于扇形OCD的面積是解題關鍵.12、45【分析】先利用平行線的性質(zhì)得出,然后通過勾股定理的逆定理得出為等腰直角三角形,從而可得出答案.【詳解】如圖,連接AD,∵∴∴∵∴∴∴故答案為45【點睛】本題主要考查平行線的性質(zhì)及勾股定理的逆定理,掌握勾股定理的逆定理及平行線的性質(zhì)是解題的關鍵.13、.【解析】根據(jù)相似三角形的性質(zhì),利用相似比求出梯形的上底和下底,用面積公式計算即可.【詳解】解:如圖,對角線所分得的三個三角形相似,根據(jù)相似的性質(zhì)可知,解得,即陰影梯形的上底就是().再根據(jù)相似的性質(zhì)可知,解得:,所以梯形的下底就是,所以陰影梯形的面積是.故答案為:.【點睛】本題考查的是相似三角形的性質(zhì),相似三角形的對應邊成比例.14、【分析】利用配方法,加上一次項系數(shù)的一半的平方來湊完全平方式,即可把一般式轉化為頂點式.【詳解】解:,,.故答案為:.【點睛】本題考查了二次函數(shù)的三種形式:一般式:,頂點式:;兩根式:.正確利用配方法把一般式化為頂點式是解題的關鍵.15、m≥﹣1【解析】試題分析:拋物線的對稱軸為直線,∵當x>1時,y的值隨x值的增大而增大,∴﹣m≤1,解得m≥﹣1.16、k<6且k≠1【解析】分析:根據(jù)解分式方程的步驟,可得分式方程的解,根據(jù)分式方程的解是正數(shù),可得不等式,解不等式,可得答案,并注意分母不分零.詳解:,方程兩邊都乘以(x-1),得x=2(x-1)+k,解得x=6-k≠1,關于x的方程程有一個正數(shù)解,∴x=6-k>0,k<6,且k≠1,∴k的取值范圍是k<6且k≠1.故答案為k<6且k≠1.點睛:本題主要考查了解分式方程、分式方程的解、一元一次不等式等知識,能根據(jù)已知和方程的解得出k的范圍是解此題的關鍵.17、4【解析】試題解析:∵可∴設DC=3x,BD=5x,又∵MN是線段AB的垂直平分線,∴AD=DB=5x,又∵AC=8cm,∴3x+5x=8,解得,x=1,在Rt△BDC中,CD=3cm,DB=5cm,故答案為:4cm.18、【分析】圖中勒洛三角形是由三塊相同的扇形疊加而成,其面積三塊扇形的面積相加,再減去兩個等邊三角形的面積,分別求出即可.【詳解】解:過作于,∵是等邊三角形,,,,,,的面積為,,勒洛三角形的面積,故答案為:.【點睛】本題考查了等邊三角形的性質(zhì)和扇形的面積計算,能根據(jù)圖形得出勒洛三角形的面積三塊扇形的面積相加、再減去兩個等邊三角形的面積是解此題的關鍵.三、解答題(共66分)19、證明見解析.【分析】由圓周角定理可得∠ADE=∠CBE,從而利用AAS可證明△ADE≌△CBE,繼而可得出結論.【詳解】證明:∵同弧所對的圓周角相等,在和中,【點睛】本題考查了圓周角定理及全等三角形的判定與性質(zhì),解答本題的關鍵是由圓周角定理得出∠ADE=∠CBE.20、【分析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與兩次傳球后,球恰在A手中的情況,再利用概率公式即可求得答案【詳解】解:列樹狀圖一共有4種結果,兩次傳球后,球在A手中的有2種情況,∴P(兩次傳球后,球在A手中的).【點睛】此題考查的是用列表法或樹狀圖法求概率.注意樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.21、(1)△FAG是等腰三角形,理由見解析;(2)成立,理由見解析;(3)BC=.【分析】(1)首先根據(jù)圓周角定理及垂直的定義得到∠BAD+∠CAD=90°,∠C+∠CAD=90°,從而得到∠BAD=∠C,然后利用等弧對等角等知識得到AF=BF,從而證得FA=FG,判定等腰三角形;(2)成立,同(1)的證明方法即可得答案;(3)由(2)知∠DAC=∠AGB,推出∠BAD=∠ABG,得到F為BG的中點根據(jù)直角三角形的性質(zhì)得到AF=BF=BG=13,求得AD=AF﹣DF=13﹣5=8,根據(jù)勾股定理得到BD=12,AB=4,由∠ABC=∠ABD,∠BAC=∠ADB=90°可證明△ABC∽△DBA,根據(jù)相似三角形的性質(zhì)即可得到結論.【詳解】(1)△FAG等腰三角形;理由如下:∵BC為直徑,∴∠BAC=90°,∴∠ABE+∠AGB=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形.(2)成立,理由如下:∵BC為直徑,∴∠BAC=90°,∴∠ABE+∠AGB=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形.(3)由(2)知∠DAC=∠AGB,且∠BAD+∠DAC=90°,∠ABG+∠AGB=90°,∴∠BAD=∠ABG,∴AF=BF,∵AF=FG,∴BF=GF,即F為BG的中點,∵△BAG為直角三角形,∴AF=BF=BG=13,∵DF=5,∴AD=AF﹣DF=13﹣5=8,∴在Rt△BDF中,BD==12,∴在Rt△BDA中,AB==4,∵∠ABC=∠ABD,∠BAC=∠ADB=90°,∴△ABC∽△DBA,∴=,∴=,∴BC=,∴⊙O的直徑BC=.【點睛】本題考查圓周角定理、相似三角形的判定與性質(zhì)及勾股定理,在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似;熟練掌握相似三角形的判定定理是解題關鍵.22、(1)y=,y=2x﹣3;(2)x>1;(3)x<﹣1.5或1<x<2;(4)點P′在直線上.【詳解】試題分析:(1)根據(jù)題意,反比例函數(shù)y=的圖象過點A(2,1),可求得k的值,進而可得解析式;一次函數(shù)y=kx+m的圖象過點A(2,1),代入求得m的值,從而得出一次函數(shù)的解析式;(2)根據(jù)(1)中求得的解析式,當y>1時,解得對應x的取值即可;(3)由題意可知,反比例函數(shù)值大于一次函數(shù)的值,即可得>2x﹣3,解得x的取值范圍即可;(4)先根據(jù)題意求出P′的坐標,再代入一次函數(shù)的解析式即可判斷P′是否在一次函數(shù)y=kx+m的圖象上..試題解析:解:(1)根據(jù)題意,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+m的圖象相交于點A(2,1),則反比例函數(shù)y=中有k=2×1=2,y=kx+m中,k=2,又∵過(2,1),解可得m=﹣3;故其解析式為y=,y=2x﹣3;(2)由(1)可得反比例函數(shù)的解析式為y=,令y>1,即>1,解可得x>1.(3)根據(jù)題意,要反比例函數(shù)值大于一次函數(shù)的值,即>2x﹣3,解可得x<﹣1.5或1<x<2.(4)根據(jù)題意,易得點P(﹣1,5)關于x軸的對稱點P′的坐標為(﹣1,﹣5)在y=2x﹣3中,x=﹣1時,y=﹣5;故點P′在直線上.考點:反比例函數(shù)與一次函數(shù)的交點問題.23、(1)y=-x2+4x;(2)點C的坐標為(3,3),3;(3)點P的坐標為(2,4)或(3,3)【分析】(1)將點A、B的坐標代入即可求出解析式;(2)求出拋物線的對稱軸,根據(jù)對稱性得到點C的坐標,再利用面積公式即可得到三角形的面積;(3)先求出直線AB的解析式,過P點作PE∥y軸交AB于點E,設其坐標為P(a,-a2+4a),得到點E的坐標為(a,-a+4),求出線段PE,即可根據(jù)面積相加關系求出a,即可得到點P的坐標.【詳解】(1)把點A(4,0),B(1,3)代入拋物線y=ax2+bx中,得,得,∴拋物線的解析式為y=-x2+4x;(2)∵,∴對稱軸是直線x=2,∵B(1,3),點C、B關于拋物線的對稱軸對稱,∴點C的坐標為(3,3),BC=2,點A的坐標是(4,0),BH⊥x軸,∴S△ABC==;(3)設直線AB的解析式為y=mx+n,將B,A兩點的坐標代入得,解得,∴y=-x+4,過P點作PE∥y軸交AB于點E,P點在拋物線y=-x2+4x的AB段,設其坐標為(a,-a2+4a),其中1<a<4,則點E的坐標為(a,-a+4),∴PE=(-a2+4a)-(-a+4)=-a2+5a-4,∴S△ABP=S△PEB+S△PEA=×PE×3=(-a2+5a-4)=,得a1=2,a2=3,P1(2,4),P2(3,3)即點C,綜上所述,當△ABP的面積為3時,點P的坐標為(2,4)或(3,3).【點睛】此題是二次函數(shù)的綜合題,考查待定系數(shù)法,對稱點的性質(zhì),圖象與坐標軸的交點,動點問題,是一道比較基礎的綜合題.24、(1)y=-14x2+12x+2;(1)32【解析】(1)根據(jù)點A,B的坐標,利用待定系數(shù)法即可求出拋物線的表達式;(1)利用配方法可求出點M的坐標,利用二次函數(shù)圖象上點的坐標特征可求出點C的坐標,過點M作MH⊥y軸,垂足為點H,利用分割圖形求面積法可得出△AMC的面積;(3)連接OB,過點B作BG⊥x軸,垂足為點G,則△BGA,△OCB是等腰直角三角形,進而可得出∠BAO=∠DBO,由∠DOB+∠BOE=45°,∠BOE+∠EOA=45°可得出∠EOA=∠DOB,進而可證出△AOE∽△BOD,利用相似三角形的性質(zhì)結合拋物線的對稱軸為直線x=1可求出AE的長,過點E作EF⊥x軸,垂足為點F,則△AEF為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得出AF、EF的長,進而可得出點E的坐標.【詳解】解:(1)將A(4,0),B(1,1)代入y=ax1+bx+1,得:16a+解得:a=∴拋物線的表達式為y=﹣14x1+12(1)∵y=﹣14x1+12x+1=﹣14(x﹣1)1∴頂點M的坐標為(1,94當x=0時,y=﹣14x1+12∴點C的坐標為(0,1).過點M作MH⊥y軸,垂足為點H,如圖1所示.∴S△AMC=S梯形AOHM﹣S△AOC﹣S△CHM,=12(HM+AO)?OH﹣12AO?OC﹣12CH=12×(1+4)×94﹣12×4×1﹣12×(=32(3)連接OB,過點B作BG⊥x軸,垂足為點G,如圖1所示.∵點B的坐標為(1,1),點A的坐標為(4,0),∴BG=1,GA=1,∴△BGA是等腰直角三角形,∴∠BAO=45°.同理,可得:∠B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園教育工作的心得體會
- 高考百日倒計時誓師大會演講稿
- 冪的乘方積的乘方教案6篇
- 社會實踐實習報告15篇
- 銷售工作心得體會范文800字(34篇)
- 年終總結大會發(fā)言稿
- 2022年餐飲行業(yè)食品安全員能力考核試卷-含答案
- 第一章緒論及學前教育基本原理
- 高處安裝、維護、拆除試題題庫及答案
- 項目安全培訓試題及參考答案【綜合題】
- 上市公司無形資產(chǎn)管理辦法
- 人教版二年級上冊數(shù)學計算題400道
- 人教版(2024新版)八年級上冊物理第二章2.5《跨學科實踐:制作隔音房間模型》教學設計
- 供應室教學課件
- 第三單元 測量(單元測試)-2024-2025學年三年級上冊數(shù)學人教版
- 第10課 讀依依往事 解依依情思《往事依依》教學設計-七年級語文上冊同步高效課堂(統(tǒng)編版)
- 第五單元 倍的認識(單元測試)-2024-2025學年三年級上冊數(shù)學人教版
- 幼兒園中班數(shù)學活動《營救汪汪隊》
- 2024年指標租賃協(xié)議模板(三篇)
- 2024年貴州黔東南州直事業(yè)單位遴選工作人員42人歷年高頻考題難、易錯點模擬試題(共500題)附帶答案詳解
- 室外箱式變電站基礎施工方案
評論
0/150
提交評論