2023年江蘇省無錫市和橋區(qū)數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
2023年江蘇省無錫市和橋區(qū)數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
2023年江蘇省無錫市和橋區(qū)數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
2023年江蘇省無錫市和橋區(qū)數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
2023年江蘇省無錫市和橋區(qū)數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年江蘇省無錫市和橋區(qū)數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.下列各說法中:①圓的每一條直徑都是它的對稱軸;②長度相等的兩條弧是等??;③相等的弦所對的弧也相等;④同弧所對的圓周角相等;⑤90°的圓周角所對的弦是直徑;⑥任何一個三角形都有唯一的外接圓;其中正確的有()A.3個 B.4個 C.5個 D.6個2.已知反比例函數(shù)y=﹣的圖象上有三個點(x1,y1)、(x2,y2)、(x3,y3),若x1>x2>0>x3,則下列關(guān)系是正確的是()A.y1<y2<y3 B.y2<y1<y3 C.y3<y2<y1 D.y2<y3<y13.下列圖形中,可以看作是中心對稱圖形的為()A. B. C. D.4.如果(,均為非零向量),那么下列結(jié)論錯誤的是()A.// B.-2=0 C.= D.5.設(shè)m是方程的一個較大的根,n是方程的一個較小的根,則的值是()A. B. C.1 D.26.如圖,在中,,,,則的面積是()A. B. C. D.7.在比例尺為1:10000000的地圖上,測得江華火車站到永州高鐵站的距離是2cm,那么江華火車站到永州高鐵站的實際距離為()kmA.20000000 B.200000 C.2000 D.2008.如圖,在中,已知點在上,點在上,,,下列結(jié)論中正確的是()A. B. C. D.9.如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針方向旋轉(zhuǎn)60°得到△A′B′C′的位置,連接C′B,則C′B的長為()A.2- B. C. D.110.關(guān)于拋物線,下列說法錯誤的是A.開口向上 B.對稱軸是y軸C.函數(shù)有最大值 D.當x>0時,函數(shù)y隨x的增大而增大二、填空題(每小題3分,共24分)11.sin245°+cos60°=____________.12.一個容器盛滿純藥液40L,第一次倒出若干升后,用水加滿;第二次又倒出同樣體積的溶液,這時容器里只剩下純藥液10L,則每次倒出的液體是__________L.13.如圖,在等腰直角三角形中,,點在軸上,點的坐標為(0,3),若點恰好在反比例函數(shù)第一象限的圖象上,過點作軸于點,那么點的坐標為__________.14.下面是“經(jīng)過已知直線外一點作這條直線的垂線”的尺規(guī)作圖過程.已知:直線和直線外一點.求作:直線的垂線,使它經(jīng)過.作法:如圖2.(1)在直線上取一點,連接;(2)分別以點和點為圓心,大于的長為半徑作弧,兩弧相交于,兩點,連接交于點;(3)以點為圓心,為半徑作圓,交直線于點(異于點),作直線.所以直線就是所求作的垂線.請你寫出上述作垂線的依據(jù):______.15.如圖,△ODC是由△OAB繞點O順時針旋轉(zhuǎn)40°后得到的圖形,若點D恰好落在AB上,且∠AOC=105°,則∠C=__.16.如圖,扇形OAB的圓心角為110°,C是上一點,則∠C=_____°.17.如圖,將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC,若點A、D、E在同一條直線上,∠ACD=70°,則∠EDC的度數(shù)是_____.18.聯(lián)結(jié)三角形各邊中點,所得的三角形的周長與原三角形周長的比是_____.三、解答題(共66分)19.(10分)如圖1,直線y=2x+2分別交x軸、y軸于點A、B,點C為x軸正半軸上的點,點D從點C處出發(fā),沿線段CB勻速運動至點B處停止,過點D作DE⊥BC,交x軸于點E,點C′是點C關(guān)于直線DE的對稱點,連接EC′,若△DEC′與△BOC的重疊部分面積為S,點D的運動時間為t(秒),S與t的函數(shù)圖象如圖2所示.(1)VD,C坐標為;(2)圖2中,m=,n=,k=.(3)求出S與t之間的函數(shù)關(guān)系式(不必寫自變量t的取值范圍).20.(6分)新羅區(qū)某校元旦文藝匯演,需要從3名女生和1名男生中隨機選擇主持人.(1)如果選擇1名主持人,那么男生當選的概率是多少?(2)如果選擇2名主持人,用畫樹狀圖(或列表)求出2名主持人恰好是1男1女的概率.21.(6分)如圖,拋物線y=x2+bx+c與x軸交于A,B兩點(A在B的左側(cè)),與y軸交于點C(0,﹣3),對稱軸為x=1,點D與C關(guān)于拋物線的對稱軸對稱.(1)求拋物線的解析式及點D的坐標;(2)點P是拋物線上的一點,當△ABP的面積是8時,求出點P的坐標;(3)點M為直線AD下方拋物線上一動點,設(shè)點M的橫坐標為m,當m為何值時,△ADM的面積最大?并求出這個最大值.22.(8分)某興趣小組為了了解本校學(xué)生參加課外體育鍛煉情況,隨機抽取本校40名學(xué)生進行問卷調(diào)查,統(tǒng)計整理并繪制了如下兩幅尚不完整的統(tǒng)計圖:根據(jù)以上信息解答下列問題:(1)課外體育鍛煉情況統(tǒng)計圖中,“經(jīng)常參加”所對應(yīng)的圓心角的度數(shù)為;“經(jīng)常參加課外體育鍛煉的學(xué)生最喜歡的一種項目”中,喜歡足球的人數(shù)有人,補全條形統(tǒng)計圖.(2)該校共有1200名學(xué)生,請估計全校學(xué)生中經(jīng)常參加課外體育鍛煉并喜歡的項目是乒乓球的人數(shù)有多少人?(3)若在“乒乓球”、“籃球”、“足球”、“羽毛球”項目中任選兩個項目成立興趣小組,請用列表法或畫樹狀圖的方法求恰好選中“乒乓球”、“籃球”這兩個項目的概率.23.(8分)(1)計算:(2)化簡:24.(8分)某市有、兩個公園,甲、乙、丙三位同學(xué)隨機選擇其中一個公園游玩,請利用樹狀圖求三位同學(xué)恰好在同一個公園游玩的概率.25.(10分)如圖,在平面直角坐標系中,為坐標原點,的邊垂直于軸,垂足為點,反比例函數(shù)的圖象經(jīng)過的中點,且與相交于點.(1)求反比例函數(shù)的解析式;(2)求的值.26.(10分)如圖,在中,點在邊上,且,已知,.(1)求的度數(shù);(2)我們把有一個內(nèi)角等于的等腰三角形稱為黃金三角形.它的腰長與底邊長的比(或者底邊長與腰長的比)等于黃金比.①寫出圖中所有的黃金三角形,選一個說明理由;②求的長.

參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據(jù)對稱軸、等弧、圓周角定理、三角形外接圓的定義及弦、弧、圓心角的相互關(guān)系分別判斷后即可解答.【詳解】①對稱軸是直線,而直徑是線段,圓的每一條直徑所在直線都是它的對稱軸,①錯誤;②在同圓或等圓中,長度相等的兩條弧是等弧,不在同圓或等圓中不一定是等弧,②錯誤;③在同圓或等圓中,相等的弦所對的弧也相等,不在同圓或等圓中,相等的弦所對的弧不一定相等,③錯誤;④根據(jù)圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半,④正確;⑤根據(jù)圓周角定理推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑,⑤正確;⑥根據(jù)三角形外接圓的定義可知,任何一個三角形都有唯一的外接圓,⑥正確.綜上,正確的結(jié)論為③④⑤.故選A.【點睛】本題了考查對稱軸、等弧、圓周角、外接圓的定義及其相互關(guān)系,熟練運用相關(guān)知識是解決問題的關(guān)鍵.2、B【分析】根據(jù)函數(shù)的解析式得出圖象所在的象限和增減性,再進行比較即可.【詳解】解:∵反比例函數(shù)y=﹣,

∴函數(shù)圖象在第二、四象限,且在每個象限內(nèi),y隨x的增大而增大,

∵函數(shù)的圖象上有三個點(x1,y1),(x2,y2)、(x3,y3),且x1>x2>0>x3,

∴y2<y1<0,y3>0∴.y2<y1<y3

故選:B.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征和函數(shù)的圖象和性質(zhì),能靈活運用函數(shù)的圖象和性質(zhì)進行推理是解此題的關(guān)鍵.3、B【分析】根據(jù)中心對稱的定義,結(jié)合所給圖形即可作出判斷.【詳解】A、不是中心對稱圖形,故本選項錯誤;

B、是中心對稱圖形,故本選項正確;

C、不是中心對稱圖形,故本選項錯誤;

D、不是中心對稱圖形,故本選項錯誤;

故選:B.【點睛】此題考查中心對稱圖形的特點,解題關(guān)鍵在于判斷中心對稱圖形的關(guān)鍵是旋轉(zhuǎn)180°后能夠重合.4、B【解析】試題解析:向量最后的差應(yīng)該還是向量.故錯誤.故選B.5、C【分析】先解一元二次方程求出m,n即可得出答案.【詳解】解方程得或,則,解方程,得或,則,,故選:C.【點睛】本題考查了解一元二次方程,掌握方程解法是解題關(guān)鍵.6、C【分析】在Rt△ABC中,求出BC,AC即可解決問題.【詳解】解:在Rt△ACB中,∵∠C=90°,AB=8cm,

∴sinA==,

∴BC=6(cm),

∴AC=(cm),

∴S△ABC=?BC?AC=×6×2=6(cm2).

故選:C.【點睛】本題考查解直角三角形的應(yīng)用,三角形的面積等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.7、D【分析】由題意根據(jù)圖上的距離與實際距離的比就是比例尺,列出比例式求解即可.【詳解】解:設(shè)江華火車站到永州高鐵站的實際距離為xcm,根據(jù)題意得:2:x=1:10000000,解得:x=20000000,20000000cm=200km.故江華火車站到永州高鐵站的實際距離為200km.故選:D.【點睛】本題主要考查比例線段,解題的關(guān)鍵是熟悉比例尺的含義進行分析.8、B【分析】由,得∠CMN=∠CNM,從而得∠AMB=∠∠ANC,結(jié)合,即可得到結(jié)論.【詳解】∵,∴∠CMN=∠CNM,∴180°-∠CMN=180°-∠CNM,即:∠AMB=∠∠ANC,∵,∴,故選B.【點睛】本題主要考查相似三角形的判定定理,掌握“對應(yīng)邊成比例,夾角相等的兩個三角形相似”是解題的關(guān)鍵.9、C【分析】如圖,連接BB′,延長BC′交AB′于點D,證明△ABC′≌△B′BC′,得到∠DBB′=∠DBA=30°;求出BD、C′D的長,即可解決問題.【詳解】解:如圖,連接BB′,延長BC′交AB′于點D,

由題意得:∠BAB′=60°,BA=B′A,

∴△ABB′為等邊三角形,

∴∠ABB′=60°,AB=B′B;

在△ABC′與△B′BC′中,∴△ABC′≌△B′BC′(SSS),

∴∠DBB′=∠DBA=30°,

∴BD⊥AB′,且AD=B′D,∵AC=BC=,∴,∴,,,.故選:C.【點睛】本題考查旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,等邊三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),直角三角形斜邊上的中線.作輔助線構(gòu)造出全等三角形并求出BC′在等邊三角形的高上是解題的關(guān)鍵,也是本題的難點.10、C【分析】由拋物線解析式可求得其開口方向、頂點坐標、最值及增減性,則可判斷四個選項,可求得答案.【詳解】A.因為a=2>0,所以開口向上,正確;B.對稱軸是y軸,正確;C.當x=0時,函數(shù)有最小值0,錯誤;D.當x>0時,y隨x增大而增大,正確;故選:C【點睛】考查二次函數(shù)的圖象與性質(zhì),掌握二次函數(shù)的圖象與系數(shù)的關(guān)系是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、1【分析】利用特殊三角函數(shù)值代入求解.【詳解】解:原式=【點睛】熟記特殊的三角函數(shù)值是解題的關(guān)鍵.12、1【分析】設(shè)每次倒出液體xL,第一次倒出后還有純藥液(40﹣x),藥液的濃度為,再倒出xL后,倒出純藥液?x,利用40﹣x﹣?x就是剩下的純藥液10L,進而可得方程.【詳解】解:設(shè)每次倒出液體xL,由題意得:40﹣x﹣?x=10,解得:x=60(舍去)或x=1.答:每次倒出1升.故答案為1.【點睛】本題考查一元二次方程的應(yīng)用.13、(5,2)【分析】由∠BAC=90°,可得△ABO≌△CAD,利用全等三角形的性質(zhì)即可求出點C坐標.【詳解】解:∵∠BAC=90°∴∠BAO+∠ABO=∠BAO+∠CAD∴∠ABO=∠CAD,又∵軸,∴∠CDA=90°在△ABO與△CAD中,∠ABO=∠CAD,∠AOB=∠CDA,AB=CA,∴△ABO≌△CAD(AAS)∴OB=AD,設(shè)OA=a()∵B(0,3)∴AD=3,∴點C(a+3,a),∵點C在反比例函數(shù)圖象上,∴,解得:或(舍去)∴點C(5,2),故答案為(5,2)【點睛】本題考查了反比例函數(shù)與等腰直角三角形相結(jié)合的題型,靈活運用幾何知識及反比例函數(shù)的圖象與性質(zhì)是解題的關(guān)鍵.14、直徑所對的圓周角是直角【分析】由題意知點E在以PA為直徑的圓上,根據(jù)“直徑所對的圓周角是直角”可得∠PEA=90°,即PE⊥直線a.【詳解】由作圖知,點E在以PA為直徑的圓上,所以∠PEA=90°,則PE⊥直線a,所以該尺規(guī)作圖的依據(jù)是:直徑所對的圓周角是直角,故答案為:直徑所對的圓周角是直角.【點睛】本題主要考查作圖?尺規(guī)作圖,解題的關(guān)鍵是掌握線段中垂線的尺規(guī)作圖及其性質(zhì)和直徑所對的圓周角是直角.15、【分析】先根據(jù)∠AOC的度數(shù)和∠BOC的度數(shù),可得∠AOB的度數(shù),再根據(jù)△AOD中,AO=DO,可得∠A的度數(shù),進而得出△ABO中∠B的度數(shù),可得∠C的度數(shù).【詳解】解:∵∠AOC的度數(shù)為105°,由旋轉(zhuǎn)可得∠AOD=∠BOC=40°,∴∠AOB=105°-40°=65°,∵△AOD中,AO=DO,∴∠A=(180°-40°)=70°,∴△ABO中,∠B=180°-70°-65°=45°,由旋轉(zhuǎn)可得,∠C=∠B=45°,故答案為:45°.【點睛】本題考查旋轉(zhuǎn)的性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用旋轉(zhuǎn)的性質(zhì)解答.16、1【分析】作所對的圓周角∠ADB,如圖,根據(jù)圓周角定理得到∠ADB=∠AOB=55°,然后利用圓內(nèi)接四邊形的性質(zhì)計算∠C的度數(shù).【詳解】解:作所對的圓周角∠ADB,如圖,∴∠ADB=∠AOB=×110°=55°,∵∠ADB+∠C=180°,∴∠C=180°﹣55°=1°.故答案為1.【點睛】本題考查了圓的綜合問題,掌握圓周角定理、圓內(nèi)接四邊形的性質(zhì)是解題的關(guān)鍵.17、115°【解析】根據(jù)∠EDC=180°﹣∠E﹣∠DCE,想辦法求出∠E,∠DCE即可.【詳解】由題意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=70°,∴∠DCE=20°,∴∠EDC=180°﹣∠E﹣∠DCE=180°﹣45°﹣20°=115°,故答案為115°.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的性質(zhì),三角形的內(nèi)角和定理等知識,解題的關(guān)鍵是靈活運用所學(xué)知識,問題,屬于中考??碱}型.18、1:1.【分析】根據(jù)D、E、F分別是AB、BC、AC的中點,得出△DEF∽△ABC,然后利用相似三角形周長比等于相似比,可得出答案.【詳解】如圖,∵D、E、F分別是AB、BC、AC的中點,∴DEAC,DE∥AC,∴△DEF∽△CAB,∴所得到的△DEF與△ABC的周長之比是:1:1.故答案為1:1.【點睛】本題考查了相似三角形的判定與性質(zhì)和三角形中位線定理的理解和掌握,解答此題的關(guān)鍵是利用了相似三角形周長比等于相似比.三、解答題(共66分)19、(1)點D的運動速度為1單位長度/秒,點C坐標為(4,0).(2);;.(3)①當點C′在線段BC上時,S=t2;②當點C′在CB的延長線上,S=?t2+t?;③當點E在x軸負半軸,S=t2?4t+1.【分析】(1)根據(jù)直線的解析式先找出點B的坐標,結(jié)合圖象可知當t=時,點C′與點B重合,通過三角形的面積公式可求出CE的長度,結(jié)合勾股定理可得出OE的長度,由OC=OE+EC可得出OC的長度,即得出C點的坐標,再由勾股定理得出BC的長度,根據(jù)CD=BC,結(jié)合速度=路程÷時間即可得出結(jié)論;(2)結(jié)合D點的運動以及面積S關(guān)于時間t的函數(shù)圖象的拐點,即可得知當“當t=k時,點D與點B重合,當t=m時,點E和點O重合”,結(jié)合∠C的正余弦值通過解直角三角形即可得出m、k的值,再由三角形的面積公式即可得出n的值;(3)隨著D點的運動,按△DEC′與△BOC的重疊部分形狀分三種情況考慮:①通過解直角三角形以及三角形的面積公式即可得出此種情況下S關(guān)于t的函數(shù)關(guān)系式;②由重合部分的面積=S△CDE?S△BC′F,通過解直角三角形得出兩個三角形的各邊長,結(jié)合三角形的面積公式即可得出結(jié)論;③通過邊與邊的關(guān)系以及解直角三角形找出BD和DF的值,結(jié)合三角形的面積公式即可得出結(jié)論.【詳解】(1)令x=0,則y=2,即點B坐標為(0,2),∴OB=2.當t=時,B和C′點重合,如圖1所示,此時S=×CE?OB=,∴CE=,∴BE=.∵OB=2,∴OE=,∴OC=OE+EC=+=4,BC=,CD=,÷=1(單位長度/秒),∴點D的運動速度為1單位長度/秒,點C坐標為(4,0).故答案為:1單位長度/秒;(4,0);(2)根據(jù)圖象可知:當t=k時,點D與點B重合,此時k==2;當t=m時,點E和點O重合,如圖2所示.sin∠C===,cos∠C=,OD=OC?sin∠C=4×=,CD=OC?cos∠C=4×=.∴m==,n=BD?OD=×(2?)×=.故答案為:;;2.(3)隨著D點的運動,按△DEC′與△BOC的重疊部分形狀分三種情況考慮:①當點C′在線段BC上時,如圖3所示.此時CD=t,CC′=2t,0<CC′≤BC,∴0<t≤.∵tan∠C=,∴DE=CD?tan∠C=t,此時S=CD?DE=t2;②當點C′在CB的延長線上,點E在線段OC上時,如圖4所示.此時CD=t,BC′=2t?2,DE=CD?tan∠C=t,CE==t,OE=OC?CE=4?t,∵,即,解得:<t≤.由(1)可知tan∠OEF==,∴OF=OE?tan∠OEF=t,BF=OB?OF=,∴FM=BF?cos∠C=.此時S=CD?DE?BC′?FM=?;③當點E在x軸負半軸,點D在線段BC上時,如圖5所示.此時CD=t,BD=BC?CD=2?t,CE=t,DF=,∵,即,∴<t≤2.此時S=BD?DF=×2×(2?t)2=t2?4t+1.綜上,當點C′在線段BC上時,S=t2;當點C′在CB的延長線上,S=?t2+t?;當點E在x軸負半軸,S=t2?4t+1.【點睛】本題考查了勾股定理、解直角三角形以及三角形的面積公式,解題的關(guān)鍵是:(1)求出BC、OC的長度;(2)根據(jù)圖象能夠了解當t=m和t=k時,點DE的位置;(3)分三種情況求出S關(guān)于t的函數(shù)關(guān)系式.本題屬于中檔題,(1)(2)難度不大;(3)需要畫出圖形,利用數(shù)形結(jié)合,通過解直角三角形以及三角形的面積公式找出S關(guān)于t的函數(shù)解析式.20、(1);(2)見解析,【分析】(1)由題意根據(jù)所有出現(xiàn)的可能情況,然后由概率公式即可求出男生當選的概率;(2)首先根據(jù)題意畫出樹狀圖,由樹狀圖求得所有等可能的結(jié)果與選出的是1名男生1名女生的情況,然后由概率公式即可求解.【詳解】解:(1)∵需要從3名女生和1名男生中隨機選擇1名主持人,∴男生當選的概率P(男生)=.(2)根據(jù)題意畫畫樹狀圖,總共有12種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,而2名主持人恰好是1男1女的結(jié)果有6種,所以2名主持人恰好是1男1女的概率P(一男一女)=.【點睛】本題考查的是用列表法或樹狀圖法求概率.注意樹狀圖與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;另外注意概率=所求情況數(shù)與總情況數(shù)之比.21、(2)y=x2﹣2x﹣3,D(2,﹣3);(2)P(2﹣2,4)或(2+2,4)或(2,﹣4);(3)m=時,△AMD的最大值為【分析】(2)由拋物線y=x2+bx+c的對稱軸為x=2,求出b的值,再由點C的坐標求出c的值即可;(2)先求出點A,點B的坐標,設(shè)點P的坐標為(s,t),因為△ABP的面積是8,根據(jù)三角形的面積公式可求出t的值,再將t的值代入拋物線解析式即可;(3)求出直線AD的解析式,過點M作MN∥y軸,交AD于點N,則點M的坐標為(m,m2﹣2m﹣3),點N的坐標為(m,﹣m﹣2),用含m的代數(shù)式表示出△AMN的面積,配方后由二次函數(shù)的性質(zhì)即可得出結(jié)論.【詳解】(2)∵拋物線y=x2+bx+c的對稱軸為x=2,∴2,∴b﹣=2.∵拋物線與y軸交于點C(0,﹣3),∴c=﹣3,∴拋物線的解析式為y=x2﹣2x﹣3,∴拋物線的對稱軸為直線x=2.∵點D與C關(guān)于拋物線的對稱軸對稱,∴點D的坐標為(2,﹣3);(2)當y=0時,x2﹣2x﹣3=0,解得:x2=﹣2,x2=3,∴點A的坐標為(﹣2,0),點B的坐標為(3,0),∴AB=3﹣(﹣2)=4,設(shè)點P的坐標為(s,t).∵△ABP的面積是8,∴AB?|yP|=8,即4|t|=8,∴t=±4,①當t=4時,s2﹣2s﹣3=4,解得:,s2=,s2=,∴點P的坐標為(,4)或(,4);②當t=﹣4時,s2﹣2s﹣3=﹣4,解得:,s2=s2=2,∴點P的坐標為(2,﹣4);綜上所述:當△ABP的面積是8時,點P的坐標為(,4)或(,4)或(2,﹣4);(3)設(shè)直線AD的解析式為y=kx+b2,將A(﹣2,0),D(2,﹣3)代入y=kx+b2,得:,解得:,∴直線AD的解析式為y=﹣x﹣2,過點M作MN∥y軸,交AD于點N.∵點M的橫坐標是m(﹣2<m<2),∴點M的坐標為(m,m2﹣2m﹣3),點N的坐標為(m,﹣m﹣2),∴MN=﹣m﹣2﹣(m2﹣2m﹣3)=﹣m2+m+2,∴S△AMD=S△AMN+S△DMNMN?(m+2)MN?(2﹣m)MN(﹣m2+m+2)(m)2,∵0,﹣22,∴當m時,S△AMD,∴當m時,△AMD的最大值為.【點睛】本題考查了待定系數(shù)法求解析式,二次函數(shù)的圖象及性質(zhì),函數(shù)的思想求最值等,解答本題的關(guān)鍵是注意分類討論思想在解題過程中的運用.22、(1)144°,1;(2)180;(3).【解析】試題分析:(1)用“經(jīng)常參加”所占的百分比乘以360°計算得到“經(jīng)常參加”所對應(yīng)的圓心角的度數(shù);先求出“經(jīng)常參加”的人數(shù),然后減去其它各組人數(shù)得出喜歡足球的人數(shù);進而補全條形圖;(2)用總?cè)藬?shù)乘以喜歡籃球的學(xué)生所占的百分比計算即可得解;(3)先利用樹狀圖展示所有12種等可能的結(jié)果數(shù),找出選中的兩個項目恰好是“乒乓球”、“籃球”所占結(jié)果數(shù),然后根據(jù)概率公式求解.試題解析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;“經(jīng)常參加”的人數(shù)為:40×40%=16人,喜歡足的學(xué)生人數(shù)為:16﹣6﹣4﹣3﹣2=1人;補全統(tǒng)計圖如圖所示:故答案為:144°,1;(2)全校學(xué)生中經(jīng)常參加課外體育鍛煉并喜歡的項目是乒乓球的人數(shù)約為:1200×=180人;(3)設(shè)A代表“乒乓球”、B代表“籃球”、C代表“足球”、D代表“羽毛球”,畫樹狀圖如下:共有12種等可能的結(jié)果數(shù),其中選中的兩個項目恰好是“乒乓球”、“籃球”的情況占2種,所以選中“乒乓球”、“籃球”這兩個項目的概率是=.點睛:本題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論