版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年浙江省杭州外國語學(xué)校數(shù)學(xué)九年級第一學(xué)期期末預(yù)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,一次函數(shù)分別與軸、軸交于點、,若sin,則的值為()A. B. C. D.2.如圖,在矩形ABCD中,DE⊥AC垂足為F,交BC于點E,BE=2EC,連接AE.則tan∠CAE的值為()A. B. C. D.3.如圖,AB是圓O的直徑,CD是圓O的弦,若,則()A. B. C. D.4.若點A(1,y1),B(2,y2),C(﹣2,y3)都在反比例函數(shù)y=(k>0)的圖象上,則y1,y2,y3的大小關(guān)系是()A.<< B.<< C.<< D.<<5.如圖,為的直徑延長到點,過點作的切線,切點為,連接,為圓上一點,則的度數(shù)為()A. B. C. D.6.某公司2017年的營業(yè)額是萬元,2019年的營業(yè)額為萬元,設(shè)該公司年營業(yè)額的平均增長率為,根據(jù)題意可列方程為()A. B.C. D.7.已知函數(shù)的圖象與x軸有交點.則的取值范圍是()A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠38.如圖,在中,,,點、、分別在邊、、上,且與關(guān)于直線DE對稱.若,,則().A.3 B.5 C. D.9.用配方法解方程,下列配方正確的是()A. B. C. D.10.方程x(x﹣1)=0的根是()A.0 B.1 C.0或1 D.無解二、填空題(每小題3分,共24分)11.如圖,拋物線和拋物線的頂點分別為點M和點N,線段MN經(jīng)過平移得到線段PQ,若點Q的橫坐標(biāo)是3,則點P的坐標(biāo)是__________,MN平移到PQ掃過的陰影部分的面積是__________.12.在測量旗桿高度的活動課中,某小組學(xué)生于同一時刻在陽光下對一根直立于平地的竹竿及其影長和旗桿的影長進(jìn)行了測量,得到的數(shù)據(jù)如圖所示,根據(jù)這些數(shù)據(jù)計算出旗桿的高度為_________m.13.若關(guān)于x的方程x2-x+sinα=0有兩個相等的實數(shù)根,則銳角α的度數(shù)為___.14.如圖,點p是∠的邊OA上的一點,點p的坐標(biāo)為(12,5),則tanα=_____.15.已知關(guān)于x的方程有兩個不相等的實數(shù)根,則的取值范__________.16.拋物線y=(x﹣3)2﹣2的頂點坐標(biāo)是_____.17.把拋物線y=2x2先向下平移1個單位,再向左平移2個單位,得到的拋物線的解析式是_______.18.如圖,在平行四邊形ABCD中,AE:BE=2:1,F(xiàn)是AD的中點,射線EF與AC交于點G,與CD的延長線交于點P,則的值為_____.三、解答題(共66分)19.(10分)如圖,在正方形中,點在邊上,過點作于,且.(1)若,求正方形的周長;(2)若,求正方形的面積.20.(6分)如圖,在半徑為5的扇形AOB中,∠AOB=90°,點C是弧AB上的一個動點(不與點A、B重合)OD⊥BC,OE⊥AC,垂足分別為D、E.(1)當(dāng)BC=6時,求線段OD的長;(2)在△DOE中是否存在長度保持不變的邊?如果存在,請指出并求其長度;如果不存在,請說明理由.21.(6分)如果三角形有一邊上的中線恰好等于這邊的長,那么稱這個三角形為“勻稱三角形”,這條中線為“勻稱中線”.(1)如圖①,在Rt△ABC中,∠C=90°,AC>BC,若Rt△ABC是“勻稱三角形”.①請判斷“勻稱中線”是哪條邊上的中線,②求BC:AC:AB的值.(2)如圖②,△ABC是⊙O的內(nèi)接三角形,AB>AC,∠BAC=45°,S△ABC=2,將△ABC繞點A逆時針旋轉(zhuǎn)45°得到△ADE,點B的對應(yīng)點為D,AD與⊙O交于點M,若△ACD是“勻稱三角形”,求CD的長,并判斷CM是否為△ACD的“勻稱中線”.22.(8分)某校為培育青少年科技創(chuàng)新能力,舉辦了動漫制作活動,小明設(shè)計了點做圓周運(yùn)動的一個雛形,如圖所示,甲、乙兩點分別從直徑的兩端點、,以順時針、逆時針的方向同時沿圓周運(yùn)動,甲運(yùn)動的路程與時間滿足關(guān)系,乙以的速度勻速運(yùn)動,半圓的長度為.(1)甲運(yùn)動后的路程是多少?(2)甲、乙從開始運(yùn)動到第一次相遇時,它們運(yùn)動了多少時間?(3)甲、乙從開始運(yùn)動到第二次相遇時,它們運(yùn)動了多少時間?23.(8分)如圖,于點是上一點,是以為圓心,為半徑的圓.是上的點,連結(jié)并延長,交于點,且.(1)求證:是的切線(證明過程中如可用數(shù)字表示的角,建議在圖中用數(shù)字標(biāo)注后用數(shù)字表示);(2)若的半徑為5,,求線段的長.24.(8分)如圖,在Rt△ABC中,∠BAC=90°,AB=AC.在平面內(nèi)任取一點D,連結(jié)AD(AD<AB),將線段AD繞點A逆時針旋轉(zhuǎn)90°,得到線段AE,連結(jié)DE,CE,BD.(1)請根據(jù)題意補(bǔ)全圖1;(2)猜測BD和CE的數(shù)量關(guān)系并證明;(3)作射線BD,CE交于點P,把△ADE繞點A旋轉(zhuǎn),當(dāng)∠EAC=90°,AB=2,AD=1時,補(bǔ)全圖形,直接寫出PB的長.25.(10分)(1)解方程.(2)計算:.26.(10分)如圖,已知拋物線y=x2+bx+c與x軸相交于A(﹣1,0),B(m,0)兩點,與y軸相交于點C(0,﹣3),拋物線的頂點為D.(1)求B、D兩點的坐標(biāo);(2)若P是直線BC下方拋物線上任意一點,過點P作PH⊥x軸于點H,與BC交于點M,設(shè)F為y軸一動點,當(dāng)線段PM長度最大時,求PH+HF+CF的最小值;(3)在第(2)問中,當(dāng)PH+HF+CF取得最小值時,將△OHF繞點O順時針旋轉(zhuǎn)60°后得到△OH′F′,過點F′作OF′的垂線與x軸交于點Q,點R為拋物線對稱軸上的一點,在平面直角坐標(biāo)系中是否存在點S,使得點D、Q、R、S為頂點的四邊形為菱形,若存在,請直接寫出點S的坐標(biāo),若不存在,請說明理由.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】由解析式求得圖象與x軸、y軸的交點坐標(biāo),再由sin,求出AB,利用勾股定理求出OA=,由此即可利用OA=1求出k的值.【詳解】∵,∴當(dāng)x=0時,y=-k,當(dāng)y=0時,x=1,∴B(0,-k),A(1,0),∵sin,∴,∵OB=-k,∴AB=,∴OA==∴=1,∴k=,故選:D.【點睛】此題考查一次函數(shù)的性質(zhì),勾股定理,三角函數(shù),解題中綜合運(yùn)用,題中求出AB,利用勾股定理求得OA的長是解題的關(guān)鍵.2、C【分析】證明△AFD∽△CFE,得出,由△CFE∽△DFC,得出,設(shè)EF=x,則DE=3x,再由三角函數(shù)定義即可得出答案.【詳解】解:設(shè)EC=x,∵BE=2EC=2x,∴BC=BE+CE=3x,∵四邊形ABCD是矩形,
∴AD=BC=3x,AD∥EC,
∴△AFD∽△CFE,
∴,,設(shè)CF=n,設(shè)EF=m,
∴DF=3EF=3m,AF=3CF=3n,∵△ECD是直角三角形,,
∴△CFE∽△DFC,
∴,∴,即,
∴,∵,∴tan∠CAE=,
故選:C.【點睛】本題考查了相似三角形的判定和性質(zhì),矩形的性質(zhì),三角函數(shù)等知識;熟練掌握矩形的性質(zhì),證明三角形相似是解題的關(guān)鍵.3、A【分析】根據(jù)同弧所對的圓周角相等可得,再根據(jù)圓直徑所對的圓周角是直角,可得,再根據(jù)三角形內(nèi)角和定理即可求出的度數(shù).【詳解】∵∴∵AB是圓O的直徑∴∴故答案為:A.【點睛】本題考查了圓內(nèi)接三角形的角度問題,掌握同弧所對的圓周角相等、圓直徑所對的圓周角是直角、三角形內(nèi)角和定理是解題的關(guān)鍵.4、D【分析】先根據(jù)反比例函數(shù)中k>1判斷出函數(shù)圖象所在的象限及增減性,再根據(jù)各點橫坐標(biāo)的特點即可得出結(jié)論.【詳解】解:∵反比例函數(shù)y=中k>1,∴函數(shù)圖象的兩個分支分別位于一、三象限,且在每一象限內(nèi)y隨x的增大而減?。擤?<1,∴點C(﹣2,y2)位于第三象限,∴y2<1,∵1<1<2,∴點A(1,y1),B(2,y2)位于第一象限,∴y1>y2>1.∴y1>y2>y2.故選:D.【點睛】本題考查的是反比例函數(shù)的性質(zhì),掌握反比例函數(shù)圖象所在象限及增減性是解答此題的關(guān)鍵.5、A【分析】連接OC,根據(jù)切線的性質(zhì)和直角三角形兩銳角互余求出的度數(shù),然后根據(jù)圓周角定理即可求出的度數(shù).【詳解】連接OC∵PC為的切線∴∵故選:A.【點睛】本題主要考查切線的性質(zhì),直角三角形兩銳角互余和圓周角定理,掌握切線的性質(zhì),直角三角形兩銳角互余和圓周角定理是解題的關(guān)鍵.6、A【分析】根據(jù)題意2017年的營業(yè)額是100萬元,設(shè)該公司年營業(yè)額的平均增長率為,則2018年的營業(yè)額是100(1+x)萬元,2019年的營業(yè)額是100(1+x)2萬元,然后根據(jù)2019年的營業(yè)額列方程即可.【詳解】解:設(shè)年平均增長率為,則2018的產(chǎn)值為:,2019的產(chǎn)值為:.那么可得方程:.故選:.【點睛】本題考查的是一元二次方程的增長率問題的應(yīng)用.7、B【解析】試題分析:若此函數(shù)與x軸有交點,則,Δ≥0,即4-4(k-3)≥0,解得:k≤4,當(dāng)k=3時,此函數(shù)為一次函數(shù),題目要求仍然成立,故本題選B.考點:函數(shù)圖像與x軸交點的特點.8、D【分析】過點F作FH⊥AD,垂足為點H,設(shè),根據(jù)勾股定理求出AC,F(xiàn)H,AH,設(shè),根據(jù)軸對稱的性質(zhì)知,在Rt△BFE中運(yùn)用勾股定理求出x,通過證明,求出DH的長,根據(jù)求出a的值,進(jìn)而求解.【詳解】過點F作FH⊥AD,垂足為點H,設(shè),由題意知,,,由勾股定理知,,,∵與關(guān)于直線DE對稱,∴,,設(shè),則,在Rt△BFE中,,解得,,即,,∵,∴,,∴,∵,∴,∴,∴,∵,∴解得,,∴,故選D.【點睛】本題考查了軸對稱圖形的性質(zhì),相似三角形的判定與性質(zhì),勾股定理,等腰直角三角形的性質(zhì)等,巧作輔助線證明是解題的關(guān)鍵.9、A【分析】通過配方法可將方程化為的形式.【詳解】解:配方,得:,由此可得:,故選A.【點睛】本題重點考查解一元二次方程中的配方法,熟練掌握配方法的過程是解題的關(guān)鍵;注意當(dāng)方程中二次項系數(shù)不為1時,要先將系數(shù)化為1后再進(jìn)行移項和配方.10、C【分析】解一元二次方程時,需要把二次方程化為兩個一元一次方程,此題可化為:或,解此兩個一次方程即可.【詳解】,或,,.
故選.【點睛】此題雖不難,但是告訴了學(xué)生求解的一個方法,高次的要化為低次的,多元得要化為一元的.二、填空題(每小題3分,共24分)11、(1,5)16【分析】先將M、N兩點坐標(biāo)分別求出,然后根據(jù)N點的移動規(guī)律得出M點的橫坐標(biāo)向右移動2個單位長度,進(jìn)一步即可求出M點坐標(biāo);根據(jù)二次函數(shù)圖像性質(zhì)我們可以推斷出MN平移到PQ掃過的陰影部分的面積等同于菱形MNQP,之后進(jìn)一步求出相關(guān)面積即可.【詳解】由題意得:M點坐標(biāo)為(-1,1),N點坐標(biāo)為(1,-3),∵點Q橫坐標(biāo)為3,∴N點橫坐標(biāo)向右平移了2個單位長度,∴P點橫坐標(biāo)為-1+2=1,∴P點縱坐標(biāo)為:1+2+2=5,∴P點坐標(biāo)為:(1,5),由題意得:Q點坐標(biāo)為:(3,1),∴MQ平行于x軸,PN平行于Y軸,∴MQ⊥PN,∴四邊形MNQP為菱形,∴菱形MNQP面積=×MQ×PN=16,∴MN平移到PQ掃過的陰影部分的面積等于16,故答案為:(1,5),16.【點睛】本題主要考查了二次函數(shù)圖像的性質(zhì)及運(yùn)用,熟練掌握相關(guān)概念是解題關(guān)鍵.12、12【分析】根據(jù)某物體的實際高度:影長=被測物體的實際高度:被測物體的影長即可得出答案.【詳解】設(shè)旗桿的高度為xm,∵∴故答案為12【點睛】本題主要考查相似三角形的應(yīng)用,掌握某物體的實際高度:影長=被測物體的實際高度:被測物體的影長是解題的關(guān)鍵.13、30°【解析】試題解析:∵關(guān)于x的方程有兩個相等的實數(shù)根,∴解得:∴銳角α的度數(shù)為30°;故答案為30°.14、【分析】根據(jù)題意過P作PE⊥x軸于E,根據(jù)P(12,5)得出PE=5,OE=12,根據(jù)銳角三角函數(shù)定義得出,代入進(jìn)行計算求出即可.【詳解】解:過P作PE⊥x軸于E,∵P(12,5),∴PE=5,OE=12,∴.故答案為:.【點睛】本題考查銳角三角函數(shù)的定義的應(yīng)用,注意掌握在Rt△ACB中,∠C=90°,則.15、且;【分析】根據(jù)一元二次方程的定義和根的判別式得出不等式組,求出不等式組的解集即可.【詳解】∵關(guān)于x的方程(k-1)x1-x+1=0有兩個不相等的實數(shù)根,∴k-1≠0且△=(-1)1-4(k-1)?1=-4k+9>0,即,解得:k<且k≠1,故答案為k<且k≠1.【點睛】本題考查了一元二次方程的定義和根的判別式,能得出關(guān)于k的不等式組是解此題的關(guān)鍵.16、(3,﹣2)【分析】根據(jù)拋物線y=a(x﹣h)2+k的頂點坐標(biāo)是(h,k)直接寫出即可.【詳解】解:拋物線y=(x﹣3)2﹣2的頂點坐標(biāo)是(3,﹣2).故答案為(3,﹣2).【點睛】此題主要考查了二次函數(shù)的性質(zhì),關(guān)鍵是熟記:拋物線的頂點坐標(biāo)是,對稱軸是.17、y=2(x+2)2﹣1【解析】直接根據(jù)“上加下減、左加右減”的原則進(jìn)行解答即可.【詳解】由“左加右減”的原則可知,二次函數(shù)y=2x2的圖象向下平移1個單位得到y(tǒng)=2x2?1,由“上加下減”的原則可知,將二次函數(shù)y=2x2?1的圖象向左平移2個單位可得到函數(shù)y=2(x+2)2?1,故答案是:y=2(x+2)2?1.【點睛】本題考查的是二次函數(shù)圖象與幾何變換,熟練掌握規(guī)律是解題的關(guān)鍵.18、【分析】設(shè)則,根據(jù)是平行四邊形,可得,即,和,可得,由于是的中點,可得,因此,,,再通過便可得出.【詳解】解:∵∴設(shè),,則∵是平行四邊形∴,∴,,∴∴又∵是的中點∴∴∴∴∴故答案為:【點睛】本題主要考查了平行四邊形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),求證兩個三角形相似,再通過比值等量代換表示出邊的數(shù)量關(guān)系是解題的關(guān)鍵.三、解答題(共66分)19、(1);(2).【分析】(1)利用AA定理證明,從而得到,設(shè),分別用含x的式子表示出AB,BE,ED,代入比例式,求出x的值,從而求正方形周長;(2)在上取一點,使,連接,利用等腰直角三角形的性質(zhì)求得,,,然后利用勾股定理求得,從而求解正方形面積.【詳解】解:(1)∵四邊形是正方形,∴.∵,∴.∴.∵,∴.∴.設(shè).∵,∴.∴.∴,∴,即.∴正方形的周長為.(2)如圖,在上取一點,使,連接.∵,,∴.又因為∠ABD=∠ADB=45°∴.∴.在中,,∴.∴.在中,.∴正方形的面積.【點睛】本題考查相似三角形的判定和性質(zhì),正方形的性質(zhì),等腰直角三角形的判定和性質(zhì)以及勾股定理的應(yīng)用,添加輔助線構(gòu)造等腰直角三角形是本題的解題關(guān)鍵.20、(1)線段OD的長為1.(2)存在,DE保持不變.DE=.【解析】試題分析:(1)如圖(1),根據(jù)垂徑定理可得BD=BC,然后只需運(yùn)用勾股定理即可求出線段OD的長;(2)連接AB,如圖(2),用勾股定理可求出AB的長,根據(jù)垂徑定理可得D和E分別是線段BC和AC的中點,根據(jù)三角形中位線定理就可得到DE=AB,DE保持不變;解:(1)如圖(1),∵OD⊥BC,∴BD=BC=×6=3,∵∠BDO=90°,OB=5,BD=3,∴OD==1,即線段OD的長為1.(2)存在,DE保持不變.理由:連接AB,如圖(2),∵∠AOB=90°,OA=OB=5,∴AB==5,∵OD⊥BC,OE⊥AC,∴D和E分別是線段BC和AC的中點,∴DE=AB=,∴DE保持不變.考點:垂徑定理;三角形中位線定理.21、(1)①“勻稱中線”是BE,它是AC邊上的中線,②BC:AC:AB=;(2)CD=a,CM不是△ACD的“勻稱中線”.理由見解析.【分析】(1)①先作出Rt△ABC的三條中線AD、BE、CF,然后利用勻稱中線的定義分別驗證即可得出答案;②設(shè)AC=2a,利用勾股定理分別把BC,AB的長度求出來即可得出答案.(2)由②知:AC:AD:CD=,設(shè)AC=,則AD=2a,CD=,過點C作CH⊥AB,垂足為H,利用的面積建立一個關(guān)于a的方程,解方程即可求出CD的長度;假設(shè)CM是△ACD的“勻稱中線”,看能否與已知的定理和推論相矛盾,如果能,則說明假設(shè)不成立,如果不能推出矛盾,說明假設(shè)成立.【詳解】(1)①如圖①,作Rt△ABC的三條中線AD、BE、CF,∵∠ACB=90°,∴CF=,即CF不是“勻稱中線”.又在Rt△ACD中,AD>AC>BC,即AD不是“勻稱中線”.∴“勻稱中線”是BE,它是AC邊上的中線,②設(shè)AC=2a,則CE=a,BE=2a,在Rt△BCE中∠BCE=90°,∴BC=,在Rt△ABC中,AB=,∴BC:AC:AB=(2)由旋轉(zhuǎn)可知,∠DAE=∠BAC=45°.AD=AB>AC,∴∠DAC=∠DAE+∠BAC=90°,AD>AC,∵Rt△ACD是“勻稱三角形”.由②知:AC:AD:CD=設(shè)AC=,則AD=2a,CD=,如圖②,過點C作CH⊥AB,垂足為H,則∠AHC=90°,∵∠BAC=45°,∴∵解得a=2,a=﹣2(舍去),∴判斷:CM不是△ACD的“勻稱中線”.理由:假設(shè)CM是△ACD的“勻稱中線”.則CM=AD=2AM=4,AM=2,∴又在Rt△CBH中,∠CHB=90°,CH=,BH=4-,∴即這與∠AMC=∠B相矛盾,∴假設(shè)不成立,∴CM不是△ACD的“勻稱中線”.【點睛】本題主要為材料理解題,掌握勻稱三角形和勻稱中線的意義是解題的關(guān)鍵.22、(1)28cm;(2)3s;(3)7s【分析】(1)將t=4代入公式計算即可;(2)第一次相遇即是共走半圓的長度,據(jù)此列方程,求解即可;(3)第二次相遇應(yīng)是走了三個半圓的長度,得到,解方程即可得到答案.【詳解】解:(1)當(dāng)t=4s時,cm.答:甲運(yùn)動4s后的路程是.(2)由圖可知,甲乙第一次相遇時走過的路程為半圓,甲走過的路程為,乙走過的路程為,則.解得或(不合題意,舍去).答:甲、乙從開始運(yùn)動到第一次相遇時,它們運(yùn)動了3s.(3)由圖可知,甲乙第二次相遇時走過的路程為三個半圓,則解得或(不合題意,舍去).答:甲、乙從開始運(yùn)動到第二次相遇時,它們運(yùn)動了7s.【點睛】此題考查一元二次方程的實際應(yīng)用,正確理解題意是解題的關(guān)鍵.23、(1)見解析;(2)【分析】(1)如圖連結(jié),先證得,即可得到,即可得到是的切線;(2)由(1)知:過作于,先證明得到,設(shè),在中,,即:解出方程即可求得答案.【詳解】證明:(1)如圖,連結(jié),則,∴,∵,∴,∵,∴,而,∴,即有,∴,故是的切線;(2)由(1)知:過作于,∵,∴,而,由勾股定理,得:,在和中,∵,,∴,∴,設(shè),在中,,即:解得:(舍去),∴.【點睛】本題考查的是相似三角形的應(yīng)用和切線的性質(zhì)定理,勾股定理應(yīng)用,是綜合性題目.24、(1)答案見解析;(2)BD=CE,證明見解析;(3)PB的長是或.【解析】試題分析:(1)根據(jù)題意畫出圖形即可;(2)根據(jù)“SAS”證明△ABD≌△ACE,從而可得BD=CE;(3)①根據(jù)“SAS”可證△ABD≌△ACE,從而得到∠ABD=∠ACE,再由兩角對應(yīng)相等的兩個三角形相似可證△ACD∽△PBE,列比例方程可求出PB的長;②與①類似,先求出PD的長,再把PD和BD相加.解:(1)如圖(2)BD和CE的數(shù)量是:BD=CE;∵∠DAB+∠BAE=∠CAE+∠BAE=90°,∴∠DAB=∠CAE.∵AD=AE,AB=AC,∴△ABD≌△ACE,∴BD=CE.(3)①CE=.∵△ABD≌△ACE,∴∠ABD=∠ACE,∴△ACD∽△PBE,,∴;②∵△ABD∽△PDC,,∴;∴PB=PD+BD=.∴PB的長是或.25、(1),;(2).【分析】(1)根據(jù)題意直接運(yùn)用公式法解一元二次方程即可;(2)根據(jù)題意運(yùn)用冪的運(yùn)算以及特殊銳角三角函數(shù)進(jìn)行計算即可.【詳解】解:(1)由題意可知,,.(2).【點睛】本題考查解一元二次方程以及實數(shù)的運(yùn)算,熟練掌握實數(shù)運(yùn)算法則以及解一元二次方程的解法是解本題的關(guān)鍵.26、(1)B(3,0),D(1,﹣4);(2);(3)存在,S的坐標(biāo)為(3,0)或(﹣1,﹣2)或(﹣1,2)或(﹣1,﹣)【分析】(1)將A(﹣1,0)、C(0,﹣3)代入y=x2+bx+c,待定系數(shù)法即可求得拋物線的解析式,再配方即可得到頂點D的坐標(biāo),根據(jù)y=0,可得點B的坐標(biāo);(2)根據(jù)BC的解析式和拋物線的解析式,設(shè)P(x,x2﹣2x﹣3),則M(x,x﹣3),表示PM的長,根據(jù)二次函數(shù)的最值可得:當(dāng)x=時,PM的最大值,此時P(,﹣),進(jìn)而確定F的位置:在x軸的負(fù)半軸了取一點K,使∠OCK=30°,過F作FN⊥CK于N,當(dāng)N、F、H三點共線時,如圖2,F(xiàn)H+FN最小,即PH+HF+CF的值最小,根據(jù)含30°角的直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度太陽能光伏發(fā)電站項目進(jìn)度控制與協(xié)調(diào)合同
- 二零二五版美容美發(fā)行業(yè)員工試用期勞動合同4篇
- 二零二五年度新型公私合作轉(zhuǎn)賬借款合同模板3篇
- 二零二五年度國有企業(yè)原材料采購合同補(bǔ)充協(xié)議范文3篇
- 二零二五年度影視MV拍攝制作與藝人肖像權(quán)合同
- 二零二五年度民政局離婚協(xié)議書修訂版解讀3篇
- 課題申報參考:民俗視域下江漢平原地區(qū)民歌音樂形態(tài)研究
- 二零二五年度農(nóng)業(yè)節(jié)水灌溉技術(shù)服務(wù)合同4篇
- 黑龍江省雙鴨山市高三上學(xué)期開學(xué)考試語文試題(含答案)
- 二零二五年度社區(qū)食堂運(yùn)營管理合同4篇
- 再生障礙性貧血課件
- 產(chǎn)后抑郁癥的護(hù)理查房
- 2024年江蘇護(hù)理職業(yè)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 電能質(zhì)量與安全課件
- 醫(yī)藥營銷團(tuán)隊建設(shè)與管理
- 工程項目設(shè)計工作管理方案及設(shè)計優(yōu)化措施
- 圍場滿族蒙古族自治縣金匯螢石開采有限公司三義號螢石礦礦山地質(zhì)環(huán)境保護(hù)與土地復(fù)墾方案
- 小升初幼升小擇校畢業(yè)升學(xué)兒童簡歷
- 資金支付審批單
- 第一單元(金融知識進(jìn)課堂)課件
- 介入導(dǎo)管室護(hù)士述職報告(5篇)
評論
0/150
提交評論