2023-2024學年山東省聊城市東昌府區(qū)九年級數(shù)學第一學期期末聯(lián)考模擬試題含解析_第1頁
2023-2024學年山東省聊城市東昌府區(qū)九年級數(shù)學第一學期期末聯(lián)考模擬試題含解析_第2頁
2023-2024學年山東省聊城市東昌府區(qū)九年級數(shù)學第一學期期末聯(lián)考模擬試題含解析_第3頁
2023-2024學年山東省聊城市東昌府區(qū)九年級數(shù)學第一學期期末聯(lián)考模擬試題含解析_第4頁
2023-2024學年山東省聊城市東昌府區(qū)九年級數(shù)學第一學期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年山東省聊城市東昌府區(qū)九年級數(shù)學第一學期期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,在直角坐標系中,已知菱形OABC的頂點A(1,2),B(3,3).作菱形OABC關于y軸的對稱圖形OA′B′C′,再作圖形OA′B′C′關于點O的中心對稱圖形OA″B″C″,則點C的對應點C″的坐標是()A.(2,-1) B.(1,-2) C.(-2,1) D.(-2,-1)2.如圖,中,且,若點在反比例函數(shù)的圖象上,點在反比例函數(shù)的圖象上,則的值為()A. B. C. D.3.已知,則下列比例式成立的是()A. B. C. D.4.圖1是一個底面為正方形的直棱柱,現(xiàn)將圖1切割成圖2的幾何體,則圖2的俯視圖是()A. B. C. D.5.下列圖形中,不是中心對稱圖形的是()A. B. C. D.6.如下圖:⊙O的直徑為10,弦AB的長為8,點P是弦AB上的一個動點,使線段OP的長度為整數(shù)的點P有()A.3個 B.4個 C.5個 D.6個7.下列事件中是必然發(fā)生的事件是()A.拋兩枚均勻的硬幣,硬幣落地后,都是正面朝上B.射擊運動員射擊一次,命中十環(huán)C.在地球上,拋出的籃球會下落D.明天會下雨8.設a、b是兩個整數(shù),若定義一種運算“△”,a△b=a2+b2+ab,則方程(x+2)△x=1的實數(shù)根是()A.x1=x2=1 B.x1=0,x2=1C.x1=x2=﹣1 D.x1=1,x2=﹣29.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結論:①abc>0;②b<a+c;③4a+2b+c>0;④2c–3b<0;⑤a+b>n(an+b)(n≠1),其中正確的結論有()A.2個 B.3個 C.4個 D.5個10.下列四幅圖的質地大小、背面圖案都一樣,把它們充分洗勻后翻放在桌面上,則從中任意抽取一張,抽到的圖案是中心對稱圖形的概率是()A. B. C. D.111.一次擲兩枚質地均勻的硬幣,出現(xiàn)兩枚硬幣都正面朝上的概率是()A. B. C. D.12.如圖,在△ABC中,BC=4,以點A為圓心,2為半徑的⊙A與BC相切于點D,交AB于點E,交AC于點F.P是⊙A上一點,且∠EPF=40°,則圖中陰影部分的面積是()A.4- B.4- C.8- D.8-二、填空題(每題4分,共24分)13.反比例函數(shù)的圖象在一、三象限,函數(shù)圖象上有兩點A(,y1,)、B(5,y2),則y1與y2,的大小關系是__________14.△ABC中,∠A、∠B都是銳角,若sinA=,cosB=,則∠C=_____.15.某商品原售價300元,經(jīng)過連續(xù)兩次降價后售價為260元,設平均每次降價的百分率為x,則滿足x的方程是______.16.若一組數(shù)據(jù)1,2,x,4的平均數(shù)是2,則這組數(shù)據(jù)的方差為_____.17.如圖,將的斜邊AB繞點A順時針旋轉得到AE,直角邊AC繞點A逆時針旋轉得到AF,連結EF.若,,且,則_____.18.一組數(shù)據(jù)6,2,–1,5的極差為__________.三、解答題(共78分)19.(8分)如圖,在△ABC中,D為AB邊上一點,∠B=∠ACD.(1)求證:△ABC∽△ACD;(2)如果AC=6,AD=4,求DB的長.20.(8分)在平面直角坐標系中,對“隔離直線”給出如下定義:點是圖形上的任意一點,點是圖形上的任意一點,若存在直線:滿足且,則稱直線:是圖形與的“隔離直線”,如圖,直線:是函數(shù)的圖像與正方形的一條“隔離直線”.

(1)在直線①,②,③,④中,是圖函數(shù)的圖像與正方形的“隔離直線”的為.(2)如圖,第一象限的等腰直角三角形的兩腰分別與坐標軸平行,直角頂點的坐標是,⊙O的半徑為,是否存在與⊙O的“隔離直線”?若存在,求出此“隔離直線”的表達式:若不存在,請說明理由;(3)正方形的一邊在軸上,其它三邊都在軸的左側,點是此正方形的中心,若存在直線是函數(shù)的圖像與正方形的“隔離直線”,請直接寫出的取值范圍.21.(8分)已知二次函數(shù)y=x2+2mx+(m2﹣1)(m是常數(shù)).(1)若它的圖象與x軸交于兩點A,B,求線段AB的長;(2)若它的圖象的頂點在直線y=x+3上,求m的值.22.(10分)如圖,邊長為3正方形的頂點與原點重合,點在軸,軸上。反比例函數(shù)的圖象交于點,連接,.(1)求反比例函數(shù)的解析式;(2)過點作軸的平行線,點在直線上運動,點在軸上運動.①若是以為直角頂點的等腰直角三角形,求的面積;②將“①”中的“以為直角頂點的”去掉,將問題改為“若是等腰直角三角形”,的面積除了“①”中求得的結果外,還可以是______.(直接寫答案,不用寫步驟)23.(10分)平面直角坐標系xOy中,二次函數(shù)y=x2﹣2mx+m2+2m+2的圖象與x軸有兩個交點.(1)當m=﹣2時,求二次函數(shù)的圖象與x軸交點的坐標;(2)過點P(0,m﹣1)作直線1⊥y軸,二次函數(shù)圖象的頂點A在直線l與x軸之間(不包含點A在直線l上),求m的范圍;(3)在(2)的條件下,設二次函數(shù)圖象的對稱軸與直線l相交于點B,求△ABO的面積最大時m的值.24.(10分)如圖,已知方格紙中的每個小方格都是相同的正方形(邊長為1),方格紙上有一個角∠AOB,A,O,B均為格點,請回答問題并只用無刻度直尺和鉛筆,完成下列作圖并簡要說明畫法:(1)OA=_____,(2)作出∠AOB的平分線并在其上標出一個點Q,使.25.(12分)已知,如圖,直線MN交⊙O于A,B兩點,AC是直徑,AD平分∠CAM交⊙O于D,過D作DE⊥MN于E(1)求證:DE是⊙O的切線;(2)若DE=6cm,AE=3cm,求⊙O的半徑.26.超市銷售某種兒童玩具,如果每件利潤為40元(市場管理部門規(guī)定,該種玩具每件利潤不能超過60元),每天可售出50件.根據(jù)市場調查發(fā)現(xiàn),銷售單價每增加2元,每天銷售量會減少1件.設銷售單價增加元,每天售出件.(1)請寫出與之間的函數(shù)表達式;(2)當為多少時,超市每天銷售這種玩具可獲利潤2250元?(3)設超市每天銷售這種玩具可獲利元,當為多少時最大,最大值是多少?

參考答案一、選擇題(每題4分,共48分)1、A【解析】先找出對應點,再用線段順次連接作出圖形,根據(jù)圖形解答即可.【詳解】如圖,.故選A.【點睛】本題考查了軸對稱作圖及中心對稱作圖,熟練掌握軸對稱作圖及中心對稱的性質是解答本題的關鍵,中心對稱的性質:①關于中心對稱的兩個圖形能夠完全重合;②關于中心對稱的兩個圖形,對應點的連線都經(jīng)過對稱中心,并且被對稱中心平分.2、D【分析】要求函數(shù)的解析式只要求出點B的坐標就可以,設點A的坐標是,過點A、B作AC⊥y軸、BD⊥y軸,分別于C、D.根據(jù)條件得到△ACO∽△ODB,利用相似三角形對應邊成比例即可求得點B的坐標,問題即可得解.【詳解】如圖,過點A,B作AC⊥y軸,BD⊥y軸,垂足分別為C,D,設點A的坐標是,

則,

∵點A在函數(shù)的圖象上,∴,∵∠AOB=90°,

∴∠AOC+∠BOD=∠AOC+∠CAO=90°,

∴∠CAO=∠BOD,

∴,∴∴,

∴,

∵點B在反比例函數(shù)的圖象上,

∴.故選:D【點睛】本題是反比例函數(shù)與幾何的綜合,考查了求函數(shù)的解析式的問題以及相似三角形的判定和性質,能夠把求反比例函數(shù)的解析式轉化為求點的坐標的問題是解題的關鍵.3、C【分析】依據(jù)比例的性質,將各選項變形即可得到正確結論.【詳解】解:A.由可得,2y=3x,不合題意;B.由可得,2y=3x,不合題意;C.由可得,3y=2x,符合題意;D.由可得,3x=2y,不合題意;故選:C.【點睛】本題主要考查了比例的性質,解決問題的關鍵是掌握:內項之積等于外項之積.4、D【分析】俯視圖是從物體上面看到的圖形,應把所看到的所有棱都表示在所得圖形中.【詳解】從上面看,圖2的俯視圖是正方形,有一條對角線.

故選:D.【點睛】本題考查了幾何體的三種視圖,掌握定義是關鍵.注意所有的看到的棱都應表現(xiàn)在三視圖中.5、A【詳解】解:根據(jù)中心對稱圖形的概念,中心對稱圖形是圖形沿對稱中心旋轉180度后與原圖重合.因此,A、不是中心對稱圖形,故本選項正確;B、是中心對稱圖形,故本選項錯誤;C、是中心對稱圖形,故本選項錯誤;D、是中心對稱圖形,故本選項錯誤.故選A.6、A【分析】當P為AB的中點時OP最短,利用垂徑定理得到OP垂直于AB,在直角三角形AOP中,由OA與AP的長,利用勾股定理求出OP的長;當P與A或B重合時,OP最長,求出OP的范圍,由OP為整數(shù),即可得到OP所有可能的長.【詳解】當P為AB的中點時,由垂徑定理得OP⊥AB,此時OP最短,∵AB=8,∴AP=BP=4,在直角三角形AOP中,OA=5,AP=4,根據(jù)勾股定理得OP=3,即OP的最小值為3;當P與A或B重合時,OP最長,此時OP=5,∴,則使線段OP的長度為整數(shù)的點P有3,4,5,共3個.故選A考點:1.垂徑定理;2.勾股定理7、C【解析】試題分析:A.拋兩枚均勻的硬幣,硬幣落地后,都是正面朝上是隨機事件,故A錯誤;B.射擊運動員射擊一次,命中十環(huán)是隨機事件,故B錯誤;C.在地球上,拋出的籃球會下落是必然事件,故C正確;D.明天會下雨是隨機事件,故D錯誤;故選C.考點:隨機事件.8、C【解析】根據(jù)題中的新定義將所求方程化為普通方程,整理成一般形式,左邊化為完全平方式,用直接開平方的方法解方程即可.【詳解】解:∵a△b=a2+b2+ab,∴(x+2)△x=(x+2)2+x2+x(x+2)=1,整理得:x2+2x+1=0,即(x+1)2=0,解得:x1=x2=﹣1.故選:C.【點睛】此題考查了解一元二次方程﹣配方法,利用此方法解方程時,首先將方程二次項系數(shù)化為1,常數(shù)項移到方程右邊,然后方程左右兩邊都加上一次項系數(shù)一半的平方,左邊化為完全平方式,右邊合并為一個非負常數(shù),開方轉化為兩個一元一次方程來求解.9、B【分析】①觀察圖象可知a<0,b>0,c>0,由此即可判定①;②當x=﹣1時,y=a﹣b+c由此可判定②;③由對稱知,當x=2時,函數(shù)值大于0,即y=4a+2b+c>0,由此可判定③;④當x=3時函數(shù)值小于0,即y=9a+3b+c<0,且x=﹣=1,可得a=﹣,代入y=9a+3b+c<0即可判定④;⑤當x=1時,y的值最大.此時,y=a+b+c,當x=n時,y=an2+bn+c,由此即可判定⑤.【詳解】①由圖象可知:a<0,b>0,c>0,abc<0,故此選項錯誤;②當x=﹣1時,y=a﹣b+c<0,即b>a+c,故此選項錯誤;③由對稱知,當x=2時,函數(shù)值大于0,即y=4a+2b+c>0,故此選項正確;④當x=3時函數(shù)值小于0,y=9a+3b+c<0,且x=﹣=1即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此選項正確;⑤當x=1時,y的值最大.此時,y=a+b+c,而當x=n時,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故此選項正確.∴③④⑤正確.故選B.【點睛】本題主要考查了拋物線的圖象與二次函數(shù)系數(shù)之間的關系,熟知拋物線的圖象與二次函數(shù)系數(shù)之間的關系是解決本題的關鍵.10、C【分析】先判斷出幾個圖形中的中心對稱圖形,再根據(jù)概率公式解答即可.【詳解】解:由圖形可得出:第1,2,3個圖形都是中心對稱圖形,∴從中任意抽取一張,抽到的圖案是中心對稱圖形的概率是:.故選:C.【點睛】此題主要考查了概率計算公式,熟練掌握中心對稱圖形的定義和概率的計算公式是解題的關鍵.11、D【解析】試題分析:先利用列表法與樹狀圖法表示所有等可能的結果n,然后找出某事件出現(xiàn)的結果數(shù)m,最后計算概率.同時擲兩枚質地均勻的硬幣一次,共有正正、反反、正反、反正四種等可能的結果,兩枚硬幣都是正面朝上的占一種,所以兩枚硬幣都是正面朝上的概率=1÷4=.考點:概率的計算.12、B【解析】試題解析:連接AD,

∵BC是切線,點D是切點,

∴AD⊥BC,

∴∠EAF=2∠EPF=80°,

∴S扇形AEF=,

S△ABC=AD?BC=×2×4=4,

∴S陰影部分=S△ABC-S扇形AEF=4-π.二、填空題(每題4分,共24分)13、【分析】根據(jù)反比例函數(shù)的性質,雙曲線的兩支分別位于第一、第三象限時k>0,在每一象限內y隨x的增大而減小,可得答案.【詳解】解:∵反比例函數(shù)的圖象在一、三象限,∴,∴在每一象限內y隨x的增大而減小,∵,∴;故答案為:.【點睛】此題主要考查了反比例函數(shù)的性質,關鍵是掌握反比例函數(shù)(k≠0),當k>0,雙曲線的兩支分別位于第一、第三象限,在每一象限內y隨x的增大而減?。?4、60°.【分析】先根據(jù)特殊角的三角函數(shù)值求出∠A、∠B的度數(shù),再根據(jù)三角形內角和定理求出∠C即可作出判斷.【詳解】∵△ABC中,∠A、∠B都是銳角,sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣60°=60°.故答案為:60°.【點睛】本題考查的是特殊角的三角函數(shù)值及三角形內角和定理,比較簡單.15、.【分析】根據(jù)降價后的售價=降價前的售價×(1-平均每次降價的百分率),可得降價一次后的售價是,降價一次后的售價是,再根據(jù)經(jīng)過連續(xù)兩次降價后售價為260元即得方程.【詳解】解:由題意可列方程為故答案為:.【點睛】本題考查一元二次方程的實際應用,增長率問題,解題的關鍵是讀懂題意,找到等量關系,正確列出方程,要注意增長的基礎.16、【分析】先由數(shù)據(jù)的平均數(shù)公式求得x,再根據(jù)方差的公式計算即可.【詳解】∵數(shù)據(jù)1,2,x,4的平均數(shù)是2,∴,解得:,∴方差.故答案為:.【點睛】本題考查了平均數(shù)與方差的定義,平均數(shù)是所有數(shù)據(jù)的和除以數(shù)據(jù)的個數(shù);方差是一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù).17、【分析】由旋轉的性質可得,,由勾股定理可求EF的長.【詳解】解:由旋轉的性質可得,,,且,故答案為【點睛】本題考查了旋轉的性質,勾股定理,靈活運用旋轉的性質是本題的關鍵.18、7【解析】根據(jù)極差的定義,一組數(shù)據(jù)的最大值與最小值的差為極差,所以這組數(shù)據(jù)的極差是7,故答案為:7.三、解答題(共78分)19、(1)見解析;(2)DB=5.【分析】(1)根據(jù)兩角相等的兩個三角形相似即可證得結論;(2)根據(jù)相似三角形的對應邊成比例即可求得AB的長,進而可得結果.【詳解】解:(1)∵∠B=∠ACD,∠A=∠A,∴△ABC∽△ACD;(2)∵△ABC∽△ACD,∴,即,解得AB=9,∴DB=AB-AD=5.【點睛】本題考查了相似三角形的判定和性質,屬于基礎題型,熟練掌握相似三角形的判定和性質是解題關鍵.20、(1)①④;(2);(3)或【分析】(1)根據(jù)的“隔離直線”的定義即可解決問題;(2)存在,連接,求得與垂直且過的直接就是“隔離直線”,據(jù)此即可求解;(3)分兩種情形正方形在x軸上方以及在x軸下方時,分別求出正方形的一個頂點在直線上時的t的值即可解決問題.【詳解】(1)根據(jù)的“隔離直線”的定義可知,是圖1函數(shù)的圖象與正方形OABC的“隔離直線”;直線也是圖1函數(shù)的圖象與正方形OABC的“隔離直線”;而與不滿足圖1函數(shù)的圖象與正方形OABC的“隔離直線”的條件;

故答案為:①④;(2)存在,理由如下:連接,過點作軸于點,如圖,在Rt△DGO中,,∵⊙O的半徑為,

∴點D在⊙O上.

過點D作DH⊥OD交y軸于點H,

∴直線DH是⊙O的切線,也是△EDF與⊙O的“隔離直線”.設直線OD的解析式為,將點D(2,1)的坐標代入得,解得:,∵DH⊥OD,∴設直線DH的解析式為,將點D(2,1)的坐標代入得,解得:,∴直線DH的解析式為,∴“隔離直線”的表達式為;(3)如圖:由題意點F的坐標為(),當直線經(jīng)過點F時,,

∴,

∴直線,即圖中直線EF,

∵正方形A1B1C1D1的中心M(1,t),

過點作⊥y軸于點G,∵點是正方形的中心,且,∴B1C1,,∴正方形A1B1C1D1的邊長為2,

當時,,∴點C1的坐標是(),此時直線EF是函數(shù))的圖象與正方形A1B1C1D1的“隔離直線”,∴點的坐標是(-1,2),此時;

當直線與只有一個交點時,,消去y得到,由,可得,

解得:,同理,此時點M的坐標為:(),∴,

根據(jù)圖象可知:當或時,直線是函數(shù))的圖象與正方形A1B1C1D1的“隔離直線”.【點睛】本題是二次函數(shù)綜合題,考查了二次函數(shù)的性質、正方形的性質、一次函數(shù)的應用、二元二次方程組.一元二次方程的根的判別式等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,學會用分類討論的思想思考問題.21、AB=2;(2)m=1.【分析】(1)令y=0求得拋物線與x軸的交點,從而求得兩交點之間的距離即可;(2)用含m的式子表示出頂點坐標,然后代入一次函數(shù)的解析式即可求得m的值.【詳解】(1)令y=x2+2mx+(m2﹣1)=0,∴(x+m+1)(x+m﹣1)=0,解得:x1=﹣m﹣1,x2=﹣m+1,∴AB=|x1﹣x2|=|﹣m﹣1﹣(﹣m+1)|=2;(2)∵二次函數(shù)y=x2+2mx+(m2﹣1),∴頂點坐標為(﹣2m,),即:(﹣2m,﹣1),∵圖象的頂點在直線y=x+3上,∴﹣×(﹣2m)+3=﹣1,解得:m=1.【點睛】本題考查了解二次函數(shù)的問題,掌握二次函數(shù)的性質以及解二次函數(shù)的方法是解題的關鍵.22、(1);(2)①或.②1或2.【解析】(1)設的坐標分別為,根據(jù)三角形的面積,構建方程即可解決問題.

(2)①分兩種情形畫出圖形:當點P在線段BM上,當點P在線段BM的延長線上時,分別利用全等三角形的性質求解即可.

②當點Q是等腰三角形的直角頂點時,分兩種情形分別求解即可.【詳解】解:(1))∵四邊形OACD是正方形,邊長為3,

∴點B的縱坐標為3,點E的橫坐標為3,

∵反比例函數(shù)的圖象交AC,CD于點B,E,設的坐標分別為.∵S△OBE=4,可得,.解得,,(舍).所以,反比例函數(shù)的解析式為.(2))①如圖1中,設直線m交OD于M.由(1)可知B(1,3),AB=1,BC=2,

當PC=PQ,∠CPQ=90°時,

∵∠CBP=∠PMQ=∠CPQ=90°,

∴∠CPB+∠BCP=90°,∠CPB+∠PQM=90°,

∴∠PCB=∠MPQ,∵PC=PQ,

∴△CBP≌△PMQ(AAS),

∴BC=PM=2,PB=MQ=1,

∴PC=PQ=∴S△PCQ=如圖2中,當PQ=PC,∠CPQ=90°,同法可得△CBP≌△PMQ(AAS),

∴PM=BC=2,OM=PB=1,

∴PC=PQ=,∴S△PCQ=.所以,的面積為或.②當點Q是等腰三角形的直角頂點時,同法可得CQ=PQ=,此時S△PCQ=1.或CQ′=PQ′=,可得S△P′CQ′=2,不存在點C為等腰三角形的直角頂點,

綜上所述,△CPQ的面積除了“①”中求得的結果外,還可以是1或2.

故答案為1或2.【點睛】本題屬于反比例函數(shù)綜合題,考查了正方形的性質,反比例函數(shù)的性質,全等三角形的判定和性質,勾股定理等知識,解題的關鍵是正確尋找全等三角形解決問題,屬于中考??碱}型.23、(1)拋物線與x軸交點坐標為:(﹣2+,0)(﹣2﹣,0)(2)﹣3<m<﹣1(3)當m=﹣時,S最大=【解析】分析:(1)與x軸相交令y=0,解一元二次方程求解;(2)應用配方法得到頂點A坐標,討論點A與直線l以及x軸之間位置關系,確定m取值范圍.(3)在(2)的基礎上表示△ABO的面積,根據(jù)二次函數(shù)性質求m.詳解:(1)當m=﹣2時,拋物線解析式為:y=x2+4x+2令y=0,則x2+4x+2=0解得x1=﹣2+,x2=﹣2﹣拋物線與x軸交點坐標為:(﹣2+,0)(﹣2﹣,0)(2)∵y=x2﹣2mx+m2+2m+2=(x﹣m)2+2m+2∴拋物線頂點坐標為A(m,2m+2)∵二次函數(shù)圖象的頂點A在直線l與x軸之間(不包含點A在直線l上)∴當直線1在x軸上方時><不等式無解當直線1在x軸下方時解得﹣3<m<﹣1(3)由(1)點A在點B上方,則AB=(2m+2)﹣(m﹣1)=m+3△ABO的面積S=(m+3)(﹣m)=﹣∵﹣<0∴當m=﹣時,S最大=點睛:本題以含有字母系數(shù)m的二次函數(shù)為背景,考查了二次函數(shù)圖象性質以及分類討論、數(shù)形結合的數(shù)學思想.24、5【解析】(1)依據(jù)勾股定理即可得到OA的長;(2)取格點C,D,連接AB,CD,交于點P

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論