河南省周口市商水縣周口中英文學(xué)校2024屆高考模擬考試試題(一)數(shù)學(xué)試題_第1頁
河南省周口市商水縣周口中英文學(xué)校2024屆高考模擬考試試題(一)數(shù)學(xué)試題_第2頁
河南省周口市商水縣周口中英文學(xué)校2024屆高考模擬考試試題(一)數(shù)學(xué)試題_第3頁
河南省周口市商水縣周口中英文學(xué)校2024屆高考模擬考試試題(一)數(shù)學(xué)試題_第4頁
河南省周口市商水縣周口中英文學(xué)校2024屆高考模擬考試試題(一)數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

河南省周口市商水縣周口中英文學(xué)校2024屆高考模擬考試試題(一)數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列為等差數(shù)列,為其前項(xiàng)和,,則()A. B. C. D.2.設(shè)函數(shù)的定義域?yàn)椋}:,的否定是()A., B.,C., D.,3.下列與的終邊相同的角的表達(dá)式中正確的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)4.復(fù)數(shù)().A. B. C. D.5.已知函數(shù)滿足=1,則等于()A.- B. C.- D.6.已知菱形的邊長(zhǎng)為2,,則()A.4 B.6 C. D.7.已知三棱錐P﹣ABC的頂點(diǎn)都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,則球O的表面積為()A. B. C. D.8.已知數(shù)列是公比為的正項(xiàng)等比數(shù)列,若、滿足,則的最小值為()A. B. C. D.9.設(shè)(是虛數(shù)單位),則()A. B.1 C.2 D.10.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B. C. D.11.已知空間兩不同直線、,兩不同平面,,下列命題正確的是()A.若且,則 B.若且,則C.若且,則 D.若不垂直于,且,則不垂直于12.已知復(fù)數(shù)(1+i)(a+i)為純虛數(shù)(i為虛數(shù)單位),則實(shí)數(shù)a=()A.-1 B.1 C.0 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列的前項(xiàng)和為,且,則______.14.已知,且,則__________.15.已知橢圓的離心率是,若以為圓心且與橢圓有公共點(diǎn)的圓的最大半徑為,此時(shí)橢圓的方程是____.16.設(shè),分別是橢圓C:()的左、右焦點(diǎn),直線l過交橢圓C于A,B兩點(diǎn),交y軸于E點(diǎn),若滿足,且,則橢圓C的離心率為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知矩形紙片中,,將矩形紙片的右下角沿線段折疊,使矩形的頂點(diǎn)B落在矩形的邊上,記該點(diǎn)為E,且折痕的兩端點(diǎn)M,N分別在邊上.設(shè),的面積為S.(1)將l表示成θ的函數(shù),并確定θ的取值范圍;(2)求l的最小值及此時(shí)的值;(3)問當(dāng)θ為何值時(shí),的面積S取得最小值?并求出這個(gè)最小值.18.(12分)某中學(xué)的甲、乙、丙三名同學(xué)參加高校自主招生考試,每位同學(xué)彼此獨(dú)立的從五所高校中任選2所.(1)求甲、乙、丙三名同學(xué)都選高校的概率;(2)若已知甲同學(xué)特別喜歡高校,他必選校,另在四校中再隨機(jī)選1所;而同學(xué)乙和丙對(duì)五所高校沒有偏愛,因此他們每人在五所高校中隨機(jī)選2所.(i)求甲同學(xué)選高校且乙、丙都未選高校的概率;(ii)記為甲、乙、丙三名同學(xué)中選高校的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.19.(12分)已知數(shù)列的各項(xiàng)均為正數(shù),且滿足.(1)求,及的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.20.(12分)的內(nèi)角的對(duì)邊分別為,若(1)求角的大?。?)若,求的周長(zhǎng)21.(12分)已知拋物線的焦點(diǎn)為,直線交于兩點(diǎn)(異于坐標(biāo)原點(diǎn)O).(1)若直線過點(diǎn),,求的方程;(2)當(dāng)時(shí),判斷直線是否過定點(diǎn),若過定點(diǎn),求出定點(diǎn)坐標(biāo);若不過定點(diǎn),說明理由.22.(10分)在直角坐標(biāo)系中,已知圓,以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,已知直線平分圓M的周長(zhǎng).(1)求圓M的半徑和圓M的極坐標(biāo)方程;(2)過原點(diǎn)作兩條互相垂直的直線,其中與圓M交于O,A兩點(diǎn),與圓M交于O,B兩點(diǎn),求面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】

利用等差數(shù)列的性質(zhì)求出的值,然后利用等差數(shù)列求和公式以及等差中項(xiàng)的性質(zhì)可求出的值.【題目詳解】由等差數(shù)列的性質(zhì)可得,.故選:B.【題目點(diǎn)撥】本題考查等差數(shù)列基本性質(zhì)的應(yīng)用,同時(shí)也考查了等差數(shù)列求和,考查計(jì)算能力,屬于基礎(chǔ)題.2、D【解題分析】

根據(jù)命題的否定的定義,全稱命題的否定是特稱命題求解.【題目詳解】因?yàn)椋海侨Q命題,所以其否定是特稱命題,即,.故選:D【題目點(diǎn)撥】本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎(chǔ)題.3、C【解題分析】

利用終邊相同的角的公式判斷即得正確答案.【題目詳解】與的終邊相同的角可以寫成2kπ+(k∈Z),但是角度制與弧度制不能混用,所以只有答案C正確.故答案為C【題目點(diǎn)撥】(1)本題主要考查終邊相同的角的公式,意在考查學(xué)生對(duì)該知識(shí)的掌握水平和分析推理能力.(2)與終邊相同的角=+其中.4、A【解題分析】試題分析:,故選A.【考點(diǎn)】復(fù)數(shù)運(yùn)算【名師點(diǎn)睛】復(fù)數(shù)代數(shù)形式的四則運(yùn)算的法則是進(jìn)行復(fù)數(shù)運(yùn)算的理論依據(jù),加減運(yùn)算類似于多項(xiàng)式的合并同類項(xiàng),乘法法則類似于多項(xiàng)式的乘法法則,除法運(yùn)算則先將除式寫成分式的形式,再將分母實(shí)數(shù)化.5、C【解題分析】

設(shè)的最小正周期為,可得,則,再根據(jù)得,又,則可求出,進(jìn)而可得.【題目詳解】解:設(shè)的最小正周期為,因?yàn)?,所以,所以,所以,又,所以?dāng)時(shí),,,因?yàn)?,整理得,因?yàn)?,,,則所以.故選:C.【題目點(diǎn)撥】本題考查三角形函數(shù)的周期性和對(duì)稱性,考查學(xué)生分析能力和計(jì)算能力,是一道難度較大的題目.6、B【解題分析】

根據(jù)菱形中的邊角關(guān)系,利用余弦定理和數(shù)量積公式,即可求出結(jié)果.【題目詳解】如圖所示,菱形形的邊長(zhǎng)為2,,∴,∴,∴,且,∴,故選B.【題目點(diǎn)撥】本題主要考查了平面向量的數(shù)量積和余弦定理的應(yīng)用問題,屬于基礎(chǔ)題..7、D【解題分析】

由題意畫出圖形,找出△PAB外接圓的圓心及三棱錐P﹣BCD的外接球心O,通過求解三角形求出三棱錐P﹣BCD的外接球的半徑,則答案可求.【題目詳解】如圖;設(shè)AB的中點(diǎn)為D;∵PA,PB,AB=4,∴△PAB為直角三角形,且斜邊為AB,故其外接圓半徑為:rAB=AD=2;設(shè)外接球球心為O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2?R2=(R)2+r2?R;∴球O的表面積為:4πR2=4π.故選:D.【題目點(diǎn)撥】本題考查多面體外接球表面積的求法,考查數(shù)形結(jié)合的解題思想方法,考查思維能力與計(jì)算能力,屬于中檔題.8、B【解題分析】

利用等比數(shù)列的通項(xiàng)公式和指數(shù)冪的運(yùn)算法則、指數(shù)函數(shù)的單調(diào)性求得再根據(jù)此范圍求的最小值.【題目詳解】數(shù)列是公比為的正項(xiàng)等比數(shù)列,、滿足,由等比數(shù)列的通項(xiàng)公式得,即,,可得,且、都是正整數(shù),求的最小值即求在,且、都是正整數(shù)范圍下求最小值和的最小值,討論、取值.當(dāng)且時(shí),的最小值為.故選:B.【題目點(diǎn)撥】本題考查等比數(shù)列的通項(xiàng)公式和指數(shù)冪的運(yùn)算法則、指數(shù)函數(shù)性質(zhì)等基礎(chǔ)知識(shí),考查數(shù)學(xué)運(yùn)算求解能力和分類討論思想,是中等題.9、A【解題分析】

先利用復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則求出,即可根據(jù)復(fù)數(shù)的模計(jì)算公式求出.【題目詳解】∵,∴.故選:A.【題目點(diǎn)撥】本題主要考查復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則的應(yīng)用,以及復(fù)數(shù)的模計(jì)算公式的應(yīng)用,屬于容易題.10、D【解題分析】循環(huán)依次為直至結(jié)束循環(huán),輸出,選D.點(diǎn)睛:算法與流程圖的考查,側(cè)重于對(duì)流程圖循環(huán)結(jié)構(gòu)的考查.先明晰算法及流程圖的相關(guān)概念,包括選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、偽代碼,其次要重視循環(huán)起點(diǎn)條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過循環(huán)規(guī)律,明確流程圖研究的數(shù)學(xué)問題,是求和還是求項(xiàng).11、C【解題分析】因答案A中的直線可以異面或相交,故不正確;答案B中的直線也成立,故不正確;答案C中的直線可以平移到平面中,所以由面面垂直的判定定理可知兩平面互相垂直,是正確的;答案D中直線也有可能垂直于直線,故不正確.應(yīng)選答案C.12、B【解題分析】

化簡(jiǎn)得到z=a-1+a+1【題目詳解】z=1+ia+i=a-1+a+1i為純虛數(shù),故a-1=0故選:B.【題目點(diǎn)撥】本題考查了根據(jù)復(fù)數(shù)類型求參數(shù),意在考查學(xué)生的計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

根據(jù)等差數(shù)列的性質(zhì)求得,結(jié)合等差數(shù)列前項(xiàng)和公式求得的值.【題目詳解】因?yàn)闉榈炔顢?shù)列,所以,解得,所以.故答案為:【題目點(diǎn)撥】本小題考查等差數(shù)列的性質(zhì),前項(xiàng)和公式的應(yīng)用等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,應(yīng)用意識(shí).14、【解題分析】試題分析:因,故,所以,,應(yīng)填.考點(diǎn):三角變換及運(yùn)用.15、【解題分析】

根據(jù)題意設(shè)為橢圓上任意一點(diǎn),表達(dá)出,再根據(jù)二次函數(shù)的對(duì)稱軸與求解的關(guān)系分析最值求解即可.【題目詳解】因?yàn)闄E圓的離心率是,,所以,故橢圓方程為.因?yàn)橐詾閳A心且與橢圓有公共點(diǎn)的圓的最大半徑為,所以橢圓上的點(diǎn)到點(diǎn)的距離的最大值為.設(shè)為橢圓上任意一點(diǎn),則.所以因?yàn)榈膶?duì)稱軸為.(i)當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減.此時(shí),解得.(ii)當(dāng)時(shí),在上單調(diào)遞減.此時(shí),解得舍去.綜上,橢圓方程為.故答案為:【題目點(diǎn)撥】本題主要考查了橢圓上的點(diǎn)到定點(diǎn)的距離最值問題,需要根據(jù)題意設(shè)橢圓上的點(diǎn),再求出距離,根據(jù)二次函數(shù)的對(duì)稱軸與區(qū)間的關(guān)系分析最值的取值點(diǎn)分類討論求解.屬于中檔題.16、【解題分析】

采用數(shù)形結(jié)合,計(jì)算以及,然后根據(jù)橢圓的定義可得,并使用余弦定理以及,可得結(jié)果.【題目詳解】如圖由,所以由,所以又,則所以所以化簡(jiǎn)可得:則故答案為:【題目點(diǎn)撥】本題考查橢圓的定義以及余弦定理的使用,關(guān)鍵在于根據(jù)角度求出線段的長(zhǎng)度,考查分析能力以及計(jì)算能力,屬中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2),的最小值為.(3)時(shí),面積取最小值為【解題分析】

(1),利用三角函數(shù)定義分別表示,且,即可得到關(guān)于的解析式;,,則,即可得到的范圍;(2)由(1),若求l的最小值即求的最大值,即可求的最大值,設(shè)為,令,則,即可設(shè),利用導(dǎo)函數(shù)判斷函數(shù)的單調(diào)性,即可求得的最大值,進(jìn)而求解;(3)由題,,則,設(shè),,利用導(dǎo)函數(shù)求得的最大值,即可求得的最小值.【題目詳解】解:(1),故.因?yàn)?所以,,所以,又,,則,所以,所以(2)記,則,設(shè),,則,記,則,令,則,當(dāng)時(shí),;當(dāng)時(shí),,所以在上單調(diào)遞增,在上單調(diào)遞減,故當(dāng)時(shí)取最小值,此時(shí),的最小值為.(3)的面積,所以,設(shè),則,設(shè),則,令,,所以當(dāng)時(shí),;當(dāng)時(shí),,所以在上單調(diào)遞增,在上單調(diào)遞減,故當(dāng),即時(shí),面積取最小值為【題目點(diǎn)撥】本題考查三角函數(shù)定義的應(yīng)用,考查利用導(dǎo)函數(shù)求最值,考查運(yùn)算能力.18、(1)(2)(i)(ii)分布列見解析,【解題分析】

(1)先計(jì)算甲、乙、丙同學(xué)分別選擇D高校的概率,利用事件的獨(dú)立性即得解;(2)(i)分別計(jì)算每個(gè)事件的概率,再利用事件的獨(dú)立性即得解;(ii),利用事件的獨(dú)立性,分別計(jì)算對(duì)應(yīng)的概率,列出分布列,計(jì)算數(shù)學(xué)期望即得解.【題目詳解】(1)甲從五所高校中任選2所,共有共10種情況,甲、乙、丙同學(xué)都選高校,共有四種情況,甲同學(xué)選高校的概率為,因此乙、丙兩同學(xué)選高校的概率為,因?yàn)槊课煌瑢W(xué)彼此獨(dú)立,所以甲、乙、丙三名同學(xué)都選高校的概率為.(2)(i)甲同學(xué)必選校且選高校的概率為,乙未選高校的概率為,丙未選高校的概率為,因?yàn)槊课煌瑢W(xué)彼此獨(dú)立,所以甲同學(xué)選高校且乙、丙都未選高校的概率為.(ii),因此,.即的分布列為0123因此數(shù)學(xué)期望為.【題目點(diǎn)撥】本題考查了事件獨(dú)立性的應(yīng)用和隨機(jī)變量的分布列和期望,考查了學(xué)生綜合分析,概念理解,實(shí)際應(yīng)用,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.19、(1);.;(2)【解題分析】

(1)根據(jù)題意,知,且,令和即可求出,,以及運(yùn)用遞推關(guān)系求出的通項(xiàng)公式;(2)通過定義法證明出是首項(xiàng)為8,公比為4的等比數(shù)列,利用等比數(shù)列的前項(xiàng)和公式,即可求得的前項(xiàng)和.【題目詳解】解:(1)由題可知,,且,當(dāng)時(shí)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論