版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆內(nèi)蒙古包頭市北方重工業(yè)集團(tuán)有限公司第三中學(xué)高三第三次高考模擬統(tǒng)一考試數(shù)學(xué)試題試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列滿(mǎn)足,(),則數(shù)列的通項(xiàng)公式()A. B. C. D.2.已知函數(shù),則下列結(jié)論錯(cuò)誤的是()A.函數(shù)的最小正周期為πB.函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng)C.函數(shù)在上單調(diào)遞增D.函數(shù)的圖象可由的圖象向左平移個(gè)單位長(zhǎng)度得到3.《算數(shù)書(shū)》竹簡(jiǎn)于上世紀(jì)八十年代在湖北省江陵縣張家山出土,這是我國(guó)現(xiàn)存最早的有系統(tǒng)的數(shù)學(xué)典籍.其中記載有求“囷蓋”的術(shù):“置如其周,令相承也.又以高乘之,三十六成一”.該術(shù)相當(dāng)于給出了由圓錐的底面周長(zhǎng)與高,計(jì)算其體積的近似公式.它實(shí)際上是將圓錐體積公式中的圓周率近似取為3.那么近似公式相當(dāng)于將圓錐體積公式中的圓周率近似取為()A. B. C. D.4.若復(fù)數(shù)(為虛數(shù)單位)的實(shí)部與虛部相等,則的值為()A. B. C. D.5.已知雙曲線(xiàn)C的兩條漸近線(xiàn)的夾角為60°,則雙曲線(xiàn)C的方程不可能為()A. B. C. D.6.設(shè),是空間兩條不同的直線(xiàn),,是空間兩個(gè)不同的平面,給出下列四個(gè)命題:①若,,,則;②若,,,則;③若,,,則;④若,,,,則.其中正確的是()A.①② B.②③ C.②④ D.③④7.已知橢圓,直線(xiàn)與直線(xiàn)相交于點(diǎn),且點(diǎn)在橢圓內(nèi)恒成立,則橢圓的離心率取值范圍為()A. B. C. D.8.函數(shù)在的圖象大致為()A. B.C. D.9.已知集合,集合,則A. B.或C. D.10.已知集合,,則的真子集個(gè)數(shù)為()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)11.祖暅原理:“冪勢(shì)既同,則積不容異”.意思是說(shuō):兩個(gè)同高的幾何體,如在等高處的截面積恒相等,則體積相等.設(shè)、為兩個(gè)同高的幾何體,、的體積不相等,、在等高處的截面積不恒相等.根據(jù)祖暅原理可知,是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.設(shè)實(shí)數(shù)x,y滿(mǎn)足條件x+y-2?02x-y+3?0x-y?0則A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù),滿(mǎn)足約束條件,則的最大值是__________.14.設(shè)等比數(shù)列的前項(xiàng)和為,若,則數(shù)列的公比是.15.如圖梯形為直角梯形,,圖中陰影部分為曲線(xiàn)與直線(xiàn)圍成的平面圖形,向直角梯形內(nèi)投入一質(zhì)點(diǎn),質(zhì)點(diǎn)落入陰影部分的概率是_____________16.若,則________,________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)某學(xué)生為了測(cè)試煤氣灶燒水如何節(jié)省煤氣的問(wèn)題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開(kāi)關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x與燒開(kāi)一壺水所用時(shí)間y的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如表),得到了散點(diǎn)圖(如圖).表中,.(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)更適宜作燒水時(shí)間y關(guān)于開(kāi)關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x的回歸方程類(lèi)型?(不必說(shuō)明理由)(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立y關(guān)于x的回歸方程;(3)若旋轉(zhuǎn)的弧度數(shù)x與單位時(shí)間內(nèi)煤氣輸出量t成正比,那么x為多少時(shí),燒開(kāi)一壺水最省煤氣?附:對(duì)于一組數(shù)據(jù),,,…,,其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為,.18.(12分)在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系.已知點(diǎn)的直角坐標(biāo)為,過(guò)的直線(xiàn)與曲線(xiàn)相交于,兩點(diǎn).(1)若的斜率為2,求的極坐標(biāo)方程和曲線(xiàn)的普通方程;(2)求的值.19.(12分)在極坐標(biāo)系中,直線(xiàn)的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,曲線(xiàn)的參數(shù)方程為(為參數(shù)),求直線(xiàn)與曲線(xiàn)的交點(diǎn)的直角坐標(biāo).20.(12分)電視傳媒公司為了解某地區(qū)觀眾對(duì)某體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱(chēng)為“體育迷”.(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?非體育迷體育迷合計(jì)男女1055合計(jì)(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方差D(X).附:.P(K2≥k)0.050.01k3.8416.63521.(12分)某中學(xué)的甲、乙、丙三名同學(xué)參加高校自主招生考試,每位同學(xué)彼此獨(dú)立的從五所高校中任選2所.(1)求甲、乙、丙三名同學(xué)都選高校的概率;(2)若已知甲同學(xué)特別喜歡高校,他必選校,另在四校中再隨機(jī)選1所;而同學(xué)乙和丙對(duì)五所高校沒(méi)有偏愛(ài),因此他們每人在五所高校中隨機(jī)選2所.(i)求甲同學(xué)選高校且乙、丙都未選高校的概率;(ii)記為甲、乙、丙三名同學(xué)中選高校的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.22.(10分)已知,.(1)當(dāng)時(shí),證明:;(2)設(shè)直線(xiàn)是函數(shù)在點(diǎn)處的切線(xiàn),若直線(xiàn)也與相切,求正整數(shù)的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解題分析】
利用數(shù)列的遞推關(guān)系式,通過(guò)累加法求解即可.【題目詳解】數(shù)列滿(mǎn)足:,,可得以上各式相加可得:,故選:.【題目點(diǎn)撥】本題考查數(shù)列的遞推關(guān)系式的應(yīng)用,數(shù)列累加法以及通項(xiàng)公式的求法,考查計(jì)算能力.2、D【解題分析】
由可判斷選項(xiàng)A;當(dāng)時(shí),可判斷選項(xiàng)B;利用整體換元法可判斷選項(xiàng)C;可判斷選項(xiàng)D.【題目詳解】由題知,最小正周期,所以A正確;當(dāng)時(shí),,所以B正確;當(dāng)時(shí),,所以C正確;由的圖象向左平移個(gè)單位,得,所以D錯(cuò)誤.故選:D.【題目點(diǎn)撥】本題考查余弦型函數(shù)的性質(zhì),涉及到周期性、對(duì)稱(chēng)性、單調(diào)性以及圖象變換后的解析式等知識(shí),是一道中檔題.3、C【解題分析】
將圓錐的體積用兩種方式表達(dá),即,解出即可.【題目詳解】設(shè)圓錐底面圓的半徑為r,則,又,故,所以,.故選:C.【題目點(diǎn)撥】本題利用古代數(shù)學(xué)問(wèn)題考查圓錐體積計(jì)算的實(shí)際應(yīng)用,考查學(xué)生的運(yùn)算求解能力、創(chuàng)新能力.4、C【解題分析】
利用復(fù)數(shù)的除法,以及復(fù)數(shù)的基本概念求解即可.【題目詳解】,又的實(shí)部與虛部相等,,解得.故選:C【題目點(diǎn)撥】本題主要考查復(fù)數(shù)的除法運(yùn)算,復(fù)數(shù)的概念運(yùn)用.5、C【解題分析】
判斷出已知條件中雙曲線(xiàn)的漸近線(xiàn)方程,求得四個(gè)選項(xiàng)中雙曲線(xiàn)的漸近線(xiàn)方程,由此確定選項(xiàng).【題目詳解】?jī)蓷l漸近線(xiàn)的夾角轉(zhuǎn)化為雙曲漸近線(xiàn)與軸的夾角時(shí)要分為兩種情況.依題意,雙曲漸近線(xiàn)與軸的夾角為30°或60°,雙曲線(xiàn)的漸近線(xiàn)方程為或.A選項(xiàng)漸近線(xiàn)為,B選項(xiàng)漸近線(xiàn)為,C選項(xiàng)漸近線(xiàn)為,D選項(xiàng)漸近線(xiàn)為.所以雙曲線(xiàn)的方程不可能為.故選:C【題目點(diǎn)撥】本小題主要考查雙曲線(xiàn)的漸近線(xiàn)方程,屬于基礎(chǔ)題.6、C【解題分析】
根據(jù)線(xiàn)面平行或垂直的有關(guān)定理逐一判斷即可.【題目詳解】解:①:、也可能相交或異面,故①錯(cuò)②:因?yàn)椋曰?,因?yàn)?,所以,故②?duì)③:或,故③錯(cuò)④:如圖因?yàn)椋?,在?nèi)過(guò)點(diǎn)作直線(xiàn)的垂線(xiàn),則直線(xiàn),又因?yàn)?,設(shè)經(jīng)過(guò)和相交的平面與交于直線(xiàn),則又,所以因?yàn)椋?,所以,所以,故④?duì).故選:C【題目點(diǎn)撥】考查線(xiàn)面平行或垂直的判斷,基礎(chǔ)題.7、A【解題分析】
先求得橢圓焦點(diǎn)坐標(biāo),判斷出直線(xiàn)過(guò)橢圓的焦點(diǎn).然后判斷出,判斷出點(diǎn)的軌跡方程,根據(jù)恒在橢圓內(nèi)列不等式,化簡(jiǎn)后求得離心率的取值范圍.【題目詳解】設(shè)是橢圓的焦點(diǎn),所以.直線(xiàn)過(guò)點(diǎn),直線(xiàn)過(guò)點(diǎn),由于,所以,所以點(diǎn)的軌跡是以為直徑的圓.由于點(diǎn)在橢圓內(nèi)恒成立,所以橢圓的短軸大于,即,所以,所以雙曲線(xiàn)的離心率,所以.故選:A【題目點(diǎn)撥】本小題主要考查直線(xiàn)與直線(xiàn)的位置關(guān)系,考查動(dòng)點(diǎn)軌跡的判斷,考查橢圓離心率的取值范圍的求法,屬于中檔題.8、C【解題分析】
先根據(jù)函數(shù)奇偶性排除B,再根據(jù)函數(shù)極值排除A;結(jié)合特殊值即可排除D,即可得解.【題目詳解】函數(shù),則,所以為奇函數(shù),排除B選項(xiàng);當(dāng)時(shí),,所以排除A選項(xiàng);當(dāng)時(shí),,排除D選項(xiàng);綜上可知,C為正確選項(xiàng),故選:C.【題目點(diǎn)撥】本題考查根據(jù)函數(shù)解析式判斷函數(shù)圖像,注意奇偶性、單調(diào)性、極值與特殊值的使用,屬于基礎(chǔ)題.9、C【解題分析】
由可得,解得或,所以或,又,所以,故選C.10、C【解題分析】
求出的元素,再確定其真子集個(gè)數(shù).【題目詳解】由,解得或,∴中有兩個(gè)元素,因此它的真子集有3個(gè).故選:C.【題目點(diǎn)撥】本題考查集合的子集個(gè)數(shù)問(wèn)題,解題時(shí)可先確定交集中集合的元素個(gè)數(shù),解題關(guān)鍵是對(duì)集合元素的認(rèn)識(shí),本題中集合都是曲線(xiàn)上的點(diǎn)集.11、A【解題分析】
由題意分別判斷命題的充分性與必要性,可得答案.【題目詳解】解:由題意,若、的體積不相等,則、在等高處的截面積不恒相等,充分性成立;反之,、在等高處的截面積不恒相等,但、的體積可能相等,例如是一個(gè)正放的正四面體,一個(gè)倒放的正四面體,必要性不成立,所以是的充分不必要條件,故選:A.【題目點(diǎn)撥】本題主要考查充分條件、必要條件的判定,意在考查學(xué)生的邏輯推理能力.12、C【解題分析】
畫(huà)出可行域和目標(biāo)函數(shù),根據(jù)目標(biāo)函數(shù)的幾何意義平移得到答案.【題目詳解】如圖所示:畫(huà)出可行域和目標(biāo)函數(shù),z=x+y+1,即y=-x+z-1,z表示直線(xiàn)在y軸的截距加上1,根據(jù)圖像知,當(dāng)x+y=2時(shí),且x∈-13,1時(shí),故選:C.【題目點(diǎn)撥】本題考查了線(xiàn)性規(guī)劃問(wèn)題,畫(huà)出圖像是解題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
令,所求問(wèn)題的最大值為,只需求出即可,作出可行域,利用幾何意義即可解決.【題目詳解】作出可行域,如圖令,則,顯然當(dāng)直線(xiàn)經(jīng)過(guò)時(shí),最大,且,故的最大值為.故答案為:.【題目點(diǎn)撥】本題考查線(xiàn)性規(guī)劃中非線(xiàn)性目標(biāo)函數(shù)的最值問(wèn)題,要做好此類(lèi)題,前提是正確畫(huà)出可行域,本題是一道基礎(chǔ)題.14、.【解題分析】
當(dāng)q=1時(shí),.當(dāng)時(shí),,所以.15、【解題分析】
聯(lián)立直線(xiàn)與拋物線(xiàn)方程求出交點(diǎn)坐標(biāo),再利用定積分求出陰影部分的面積,利用梯形的面積公式求出,最后根據(jù)幾何概型的概率公式計(jì)算可得;【題目詳解】解:聯(lián)立解得或,即,,,,,故答案為:【題目點(diǎn)撥】本題考查幾何概型的概率公式的應(yīng)用以及利用微積分基本定理求曲邊形的面積,屬于中檔題.16、【解題分析】
根據(jù)誘導(dǎo)公式和二倍角公式計(jì)算得到答案.【題目詳解】,故.故答案為:;.【題目點(diǎn)撥】本題考查了誘導(dǎo)公式和二倍角公式,屬于簡(jiǎn)單題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)更適宜(2)(3)x為2時(shí),燒開(kāi)一壺水最省煤氣【解題分析】
(1)根據(jù)散點(diǎn)圖是否按直線(xiàn)型分布作答;(2)根據(jù)回歸系數(shù)公式得出y關(guān)于的線(xiàn)性回歸方程,再得出y關(guān)于x的回歸方程;(3)利用基本不等式得出煤氣用量的最小值及其成立的條件.【題目詳解】(1)更適宜作燒水時(shí)間y關(guān)于開(kāi)關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x的回歸方程類(lèi)型.(2)由公式可得:,,所以所求回歸方程為.(3)設(shè),則煤氣用量,當(dāng)且僅當(dāng)時(shí)取“”,即時(shí),煤氣用量最小.故x為2時(shí),燒開(kāi)一壺水最省煤氣.【題目點(diǎn)撥】本題考查擬合模型的選擇,回歸方程的求解,涉及均值不等式的使用,屬綜合中檔題.18、(1):,:;(2)【解題分析】
(1)根據(jù)點(diǎn)斜式寫(xiě)出直線(xiàn)的直角坐標(biāo)方程,并轉(zhuǎn)化為極坐標(biāo)方程,利用,將曲線(xiàn)的參數(shù)方程轉(zhuǎn)化為普通方程.(2)將直線(xiàn)的參數(shù)方程代入曲線(xiàn)的普通方程,結(jié)合直線(xiàn)參數(shù)的幾何意義以及根與系數(shù)關(guān)系,求得的值.【題目詳解】(1)的直角坐標(biāo)方程為,即,則的極坐標(biāo)方程為.曲線(xiàn)的普通方程為.(2)直線(xiàn)的參數(shù)方程為(為參數(shù),為的傾斜角),代入曲線(xiàn)的普通方程,得.設(shè),對(duì)應(yīng)的參數(shù)分別為,,所以,在的兩側(cè).則.【題目點(diǎn)撥】本小題主要考查直角坐標(biāo)化為極坐標(biāo),考查參數(shù)方程化為普通方程,考查直線(xiàn)參數(shù)方程,考查直線(xiàn)參數(shù)的幾何意義,屬于中檔題.19、【解題分析】
將直線(xiàn)的極坐標(biāo)方程和曲線(xiàn)的參數(shù)方程分別化為直角坐標(biāo)方程,聯(lián)立直角坐標(biāo)方程求出交點(diǎn)坐標(biāo),結(jié)合的取值范圍進(jìn)行取舍即可.【題目詳解】因?yàn)橹本€(xiàn)的極坐標(biāo)方程為,所以直線(xiàn)的普通方程為,又因?yàn)榍€(xiàn)的參數(shù)方程為(為參數(shù)),所以曲線(xiàn)的直角坐標(biāo)方程為,聯(lián)立方程,解得或,因?yàn)?,所以舍去,故點(diǎn)的直角坐標(biāo)為.【題目點(diǎn)撥】本題考查極坐標(biāo)方程、參數(shù)方程與直角坐標(biāo)方程的互化;考查運(yùn)算求解能力;熟練掌握極坐標(biāo)方程、參數(shù)方程與直角坐標(biāo)方程的互化公式是求解本題的關(guān)鍵;屬于中檔題、??碱}型.20、(1)無(wú)關(guān);(2),.【解題分析】
(1)由頻率分布直方圖可知,在抽取的100人中,“體育迷”有25人,從而可得列聯(lián)表如下:非體育迷體育迷合計(jì)男301545女451055合計(jì)7525100將22列聯(lián)表中的數(shù)據(jù)代入公式計(jì)算,得.因?yàn)?.030<3.841,所以我們沒(méi)有充分理由認(rèn)為“體育迷”與性別有關(guān).(2)由頻率分布直方圖知抽到“體育迷”的頻率為0.25,將頻率視為概率,即從觀眾中抽取一名“體育迷”的概率.由題意知X~B(3,),從而X的分布列為X0123PE(X)=np==.D(X)=np(1-p)=21、(1)(2)(i)(ii)分布列見(jiàn)解析,【解題分析】
(1)先計(jì)算甲、乙、丙同學(xué)分別選擇D高校的概率,利用事件的獨(dú)立性即得解;(2)(i)分別計(jì)算每個(gè)事件的概率,再利用事件的獨(dú)立性即得解;(ii),利用事件的獨(dú)立性,分別計(jì)算對(duì)應(yīng)的概率,列出分布列,計(jì)算數(shù)學(xué)期望即得解.【題目詳解】(1)甲從五所高校中任選2所,共有共10種情況,甲、乙、丙同學(xué)都選高校,共有四種情況,甲同學(xué)選高校的概率為,因
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 屈營(yíng)學(xué)校2024年防溺水工作方案
- 物聯(lián)網(wǎng)服務(wù)合同
- 2024八年級(jí)數(shù)學(xué)第一學(xué)期教學(xué)工作總結(jié)
- 納稅籌劃協(xié)議
- 產(chǎn)品協(xié)議模板
- 業(yè)務(wù)進(jìn)出口合同
- 納稅融資租賃協(xié)議
- 教育產(chǎn)業(yè)貸款服務(wù)合同模板
- 熱力管道施工方案
- 合作伙伴協(xié)議
- 第5.3課《聯(lián)系生活實(shí)際弘揚(yáng)工匠精神》(課件)-【中職專(zhuān)用】高二語(yǔ)文同步課件(高教版2023·職業(yè)模塊)
- 斐樂(lè)管理制度
- 小學(xué)生語(yǔ)文讀書(shū)專(zhuān)題講座課件-閱讀講座
- 《能臣袁崇煥》課件
- 大流量深井潛水泵技術(shù)研發(fā)
- 來(lái)那度胺聯(lián)合利妥昔單抗治療老年初診彌漫大B細(xì)胞淋巴瘤的臨床療效研究演示稿件
- 15《我與地壇(節(jié)選)》說(shuō)課稿2023-2024學(xué)年高中語(yǔ)文必修上冊(cè)
- 2024版國(guó)開(kāi)電大專(zhuān)科《課堂提問(wèn)與引導(dǎo)》在線(xiàn)形考(階段性學(xué)習(xí)測(cè)驗(yàn)一至六)+終考考核試題及答案
- 護(hù)理品管圈QCC之提高手術(shù)物品清點(diǎn)規(guī)范執(zhí)行率課件
- 浙江省“衢溫51”聯(lián)盟2023-2024學(xué)年高一上學(xué)期期中聯(lián)考?xì)v史試題
評(píng)論
0/150
提交評(píng)論