德陽市重點(diǎn)中學(xué)2024屆高三下學(xué)期四??荚嚁?shù)學(xué)試題_第1頁
德陽市重點(diǎn)中學(xué)2024屆高三下學(xué)期四模考試數(shù)學(xué)試題_第2頁
德陽市重點(diǎn)中學(xué)2024屆高三下學(xué)期四??荚嚁?shù)學(xué)試題_第3頁
德陽市重點(diǎn)中學(xué)2024屆高三下學(xué)期四??荚嚁?shù)學(xué)試題_第4頁
德陽市重點(diǎn)中學(xué)2024屆高三下學(xué)期四??荚嚁?shù)學(xué)試題_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

德陽市重點(diǎn)中學(xué)2024屆高三下學(xué)期四模考試數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在底面邊長為1,高為2的正四棱柱中,點(diǎn)是平面內(nèi)一點(diǎn),則三棱錐的正視圖與側(cè)視圖的面積之和為()A.2 B.3 C.4 D.52.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},則M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)3.《九章算術(shù)》有如下問題:“今有金箠,長五尺,斬本一尺,重四斤;斬末一尺,重二斤,問次一尺各重幾何?”意思是:“現(xiàn)在有一根金箠,長五尺在粗的一端截下一尺,重斤;在細(xì)的一端截下一尺,重斤,問各尺依次重多少?”按這一問題的顆設(shè),假設(shè)金箠由粗到細(xì)各尺重量依次成等差數(shù)列,則從粗端開始的第二尺的重量是()A.斤 B.斤 C.斤 D.斤4.將函數(shù)圖象向右平移個單位長度后,得到函數(shù)的圖象關(guān)于直線對稱,則函數(shù)在上的值域是()A. B. C. D.5.已知雙曲線滿足以下條件:①雙曲線E的右焦點(diǎn)與拋物線的焦點(diǎn)F重合;②雙曲線E與過點(diǎn)的冪函數(shù)的圖象交于點(diǎn)Q,且該冪函數(shù)在點(diǎn)Q處的切線過點(diǎn)F關(guān)于原點(diǎn)的對稱點(diǎn).則雙曲線的離心率是()A. B. C. D.6.若函數(shù)有兩個極值點(diǎn),則實數(shù)的取值范圍是()A. B. C. D.7.設(shè)復(fù)數(shù)滿足(為虛數(shù)單位),則復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.若函數(shù)在處有極值,則在區(qū)間上的最大值為()A. B.2 C.1 D.39.復(fù)數(shù)滿足,則復(fù)數(shù)等于()A. B. C.2 D.-210.在中,內(nèi)角所對的邊分別為,若依次成等差數(shù)列,則()A.依次成等差數(shù)列 B.依次成等差數(shù)列C.依次成等差數(shù)列 D.依次成等差數(shù)列11.已知集合,,,則()A. B. C. D.12.已知函數(shù)的圖像的一條對稱軸為直線,且,則的最小值為()A. B.0 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在直角坐標(biāo)系中,已知點(diǎn)和點(diǎn),若點(diǎn)在的平分線上,且,則向量的坐標(biāo)為___________.14.某校名學(xué)生參加軍事冬令營活動,活動期間各自扮演一名角色進(jìn)行分組游戲,角色按級別從小到大共種,分別為士兵、排長、連長、營長、團(tuán)長、旅長、師長、軍長和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級別連續(xù)的個不同角色.已知這名學(xué)生扮演的角色有名士兵和名司令,其余角色各人,現(xiàn)在新加入名學(xué)生,將這名學(xué)生分成組進(jìn)行游戲,則新加入的學(xué)生可以扮演的角色的種數(shù)為________.15.已知數(shù)列的前項和為且滿足,則數(shù)列的通項_______.16.已知實數(shù)滿足則點(diǎn)構(gòu)成的區(qū)域的面積為____,的最大值為_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)的內(nèi)角A,B,C的對邊分別為a,b,c,已知.(1)求B;(2)若,求的面積的最大值.18.(12分)已知函數(shù),.(1)求的值;(2)令在上最小值為,證明:.19.(12分)已知數(shù)列的各項均為正數(shù),為其前n項和,對于任意的滿足關(guān)系式.(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列的通項公式是,前n項和為,求證:對于任意的正數(shù)n,總有.20.(12分)已知函數(shù)(1)若函數(shù)在處取得極值1,證明:(2)若恒成立,求實數(shù)的取值范圍.21.(12分)在平面直角坐標(biāo)系中,為直線上動點(diǎn),過點(diǎn)作拋物線:的兩條切線,,切點(diǎn)分別為,,為的中點(diǎn).(1)證明:軸;(2)直線是否恒過定點(diǎn)?若是,求出這個定點(diǎn)的坐標(biāo);若不是,請說明理由.22.(10分)等差數(shù)列的前項和為,已知,.(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列{}的前項和為,求使成立的的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】

根據(jù)幾何體分析正視圖和側(cè)視圖的形狀,結(jié)合題干中的數(shù)據(jù)可計算出結(jié)果.【題目詳解】由三視圖的性質(zhì)和定義知,三棱錐的正視圖與側(cè)視圖都是底邊長為高為的三角形,其面積都是,正視圖與側(cè)視圖的面積之和為,故選:A.【題目點(diǎn)撥】本題考查幾何體正視圖和側(cè)視圖的面積和,解答的關(guān)鍵就是分析出正視圖和側(cè)視圖的形狀,考查空間想象能力與計算能力,屬于基礎(chǔ)題.2、C【解題分析】

先化簡N={x|x(x+3)≤0}={x|-3≤x≤0},再根據(jù)M={x|﹣1<x<2},求兩集合的交集.【題目詳解】因為N={x|x(x+3)≤0}={x|-3≤x≤0},又因為M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故選:C【題目點(diǎn)撥】本題主要考查集合的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.3、B【解題分析】

依題意,金箠由粗到細(xì)各尺重量構(gòu)成一個等差數(shù)列,則,由此利用等差數(shù)列性質(zhì)求出結(jié)果.【題目詳解】設(shè)金箠由粗到細(xì)各尺重量依次所成得等差數(shù)列為,設(shè)首項,則,公差,.故選B【題目點(diǎn)撥】本題考查了等差數(shù)列的通項公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.4、D【解題分析】

由題意利用函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,余弦函數(shù)的值域,求得結(jié)果.【題目詳解】解:把函數(shù)圖象向右平移個單位長度后,可得的圖象;再根據(jù)得到函數(shù)的圖象關(guān)于直線對稱,,,,函數(shù).在上,,,故,即的值域是,故選:D.【題目點(diǎn)撥】本題主要考查函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,余弦函數(shù)的值域,屬于中檔題.5、B【解題分析】

由已知可求出焦點(diǎn)坐標(biāo)為,可求得冪函數(shù)為,設(shè)出切點(diǎn)通過導(dǎo)數(shù)求出切線方程的斜率,利用斜率相等列出方程,即可求出切點(diǎn)坐標(biāo),然后求解雙曲線的離心率.【題目詳解】依題意可得,拋物線的焦點(diǎn)為,F(xiàn)關(guān)于原點(diǎn)的對稱點(diǎn);,,所以,,設(shè),則,解得,∴,可得,又,,可解得,故雙曲線的離心率是.故選B.【題目點(diǎn)撥】本題考查雙曲線的性質(zhì),已知拋物線方程求焦點(diǎn)坐標(biāo),求冪函數(shù)解析式,直線的斜率公式及導(dǎo)數(shù)的幾何意義,考查了學(xué)生分析問題和解決問題的能力,難度一般.6、A【解題分析】試題分析:由題意得有兩個不相等的實數(shù)根,所以必有解,則,且,∴.考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)極值點(diǎn)【方法點(diǎn)睛】函數(shù)極值問題的常見類型及解題策略(1)知圖判斷函數(shù)極值的情況.先找導(dǎo)數(shù)為0的點(diǎn),再判斷導(dǎo)數(shù)為0的點(diǎn)的左、右兩側(cè)的導(dǎo)數(shù)符號.(2)已知函數(shù)求極值.求f′(x)―→求方程f′(x)=0的根―→列表檢驗f′(x)在f′(x)=0的根的附近兩側(cè)的符號―→下結(jié)論.(3)已知極值求參數(shù).若函數(shù)f(x)在點(diǎn)(x0,y0)處取得極值,則f′(x0)=0,且在該點(diǎn)左、右兩側(cè)的導(dǎo)數(shù)值符號相反.7、D【解題分析】

先把變形為,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,求出,得到其坐標(biāo)可得答案.【題目詳解】解:由,得,所以,其在復(fù)平面內(nèi)對應(yīng)的點(diǎn)為,在第四象限故選:D【題目點(diǎn)撥】此題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.8、B【解題分析】

根據(jù)極值點(diǎn)處的導(dǎo)數(shù)為零先求出的值,然后再按照求函數(shù)在連續(xù)的閉區(qū)間上最值的求法計算即可.【題目詳解】解:由已知得,,,經(jīng)檢驗滿足題意.,.由得;由得或.所以函數(shù)在上遞增,在上遞減,在上遞增.則,,由于,所以在區(qū)間上的最大值為2.故選:B.【題目點(diǎn)撥】本題考查了導(dǎo)數(shù)極值的性質(zhì)以及利用導(dǎo)數(shù)求函數(shù)在連續(xù)的閉區(qū)間上的最值問題的基本思路,屬于中檔題.9、B【解題分析】

通過復(fù)數(shù)的模以及復(fù)數(shù)的代數(shù)形式混合運(yùn)算,化簡求解即可.【題目詳解】復(fù)數(shù)滿足,∴,故選B.【題目點(diǎn)撥】本題主要考查復(fù)數(shù)的基本運(yùn)算,復(fù)數(shù)模長的概念,屬于基礎(chǔ)題.10、C【解題分析】

由等差數(shù)列的性質(zhì)、同角三角函數(shù)的關(guān)系以及兩角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,從而可得結(jié)果.【題目詳解】依次成等差數(shù)列,,正弦定理得,由余弦定理得,,即依次成等差數(shù)列,故選C.【題目點(diǎn)撥】本題主要考查等差數(shù)列的定義、正弦定理、余弦定理,屬于難題.解三角形時,有時可用正弦定理,有時也可用余弦定理,應(yīng)注意用哪一個定理更方便、簡捷.如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時,則考慮用正弦定理;以上特征都不明顯時,則要考慮兩個定理都有可能用到.11、D【解題分析】

根據(jù)集合的基本運(yùn)算即可求解.【題目詳解】解:,,,則故選:D.【題目點(diǎn)撥】本題主要考查集合的基本運(yùn)算,屬于基礎(chǔ)題.12、D【解題分析】

運(yùn)用輔助角公式,化簡函數(shù)的解析式,由對稱軸的方程,求得的值,得出函數(shù)的解析式,集合正弦函數(shù)的最值,即可求解,得到答案.【題目詳解】由題意,函數(shù)為輔助角,由于函數(shù)的對稱軸的方程為,且,即,解得,所以,又由,所以函數(shù)必須取得最大值和最小值,所以可設(shè),,所以,當(dāng)時,的最小值,故選D.【題目點(diǎn)撥】本題主要考查了正弦函數(shù)的圖象與性質(zhì),其中解答中利用三角恒等變換的公式,化簡函數(shù)的解析式,合理利用正弦函數(shù)的對稱性與最值是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

點(diǎn)在的平分線可知與向量共線,利用線性運(yùn)算求解即可.【題目詳解】因為點(diǎn)在的平線上,所以存在使,而,可解得,所以,故答案為:【題目點(diǎn)撥】本題主要考查了向量的線性運(yùn)算,利用向量的坐標(biāo)求向量的模,屬于中檔題.14、【解題分析】

對新加入的學(xué)生所扮演的角色進(jìn)行分類討論,分析各種情況下個學(xué)生所扮演的角色的分組,綜合可得出結(jié)論.【題目詳解】依題意,名學(xué)生分成組,則一定是個人組和個人組.①若新加入的學(xué)生是士兵,則可以將這個人分組如下;名士兵;士兵、排長、連長各名;營長、團(tuán)長、旅長各名;師長、軍長、司令各名;名司令.所以新加入的學(xué)生可以是士兵,由對稱性可知也可以是司令;②若新加入的學(xué)生是排長,則可以將這個人分組如下:名士兵;連長、營長、團(tuán)長各名;旅長、師長、軍長各名;名司令;名排長.所以新加入的學(xué)生可以是排長,由對稱性可知也可以是軍長;③若新加入的學(xué)生是連長,則可以將這個人分組如下:名士兵;士兵、排長、連長各名;連長、營長、團(tuán)長各名;旅長、師長、軍長各名;名司令.所以新加入的學(xué)生可以是連長,由對稱性可知也可以是師長;④若新加入的學(xué)生是營長,則可以將這個人分組如下:名士兵;排長、連長、營長各名;營長、團(tuán)長、旅長各名;師長、軍長、司令各名;名司令.所以新加入的學(xué)生可以是營長,由對稱性可知也可以是旅長;⑤若新加入的學(xué)生是團(tuán)長,則可以將這個人分組如下:名士兵;排長、連長、營長各名;旅長、師長、軍長各名;名司令;名團(tuán)長.所以新加入的學(xué)生可以是團(tuán)長.綜上所述,新加入學(xué)生可以扮演種角色.故答案為:.【題目點(diǎn)撥】本題考查分類計數(shù)原理的應(yīng)用,解答的關(guān)鍵就是對新加入的學(xué)生所扮演的角色進(jìn)行分類討論,屬于中等題.15、【解題分析】

先求得時;再由可得時,兩式作差可得,進(jìn)而求解.【題目詳解】當(dāng)時,,解得;由,可知當(dāng)時,,兩式相減,得,即,所以數(shù)列是首項為,公比為的等比數(shù)列,所以,故答案為:【題目點(diǎn)撥】本題考查由與的關(guān)系求通項公式,考查等比數(shù)列的通項公式的應(yīng)用.16、811【解題分析】

畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合求得區(qū)域面積以及目標(biāo)函數(shù)的最值.【題目詳解】不等式組表示的平面區(qū)域如下圖所示:數(shù)形結(jié)合可知,可行域為三角形,且底邊長,高為,故區(qū)域面積;令,變?yōu)椋@然直線過時,z最大,故.故答案為:;11.【題目點(diǎn)撥】本題考查簡單線性規(guī)劃問題,涉及區(qū)域面積的求解,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】

(1)由正弦定理邊化角化簡已知條件可求得,即可求得;(2)由余弦定理借助基本不等式可求得,即可求出的面積的最大值.【題目詳解】(1),,所以,所以,,,,.(2)由余弦定理得.,,當(dāng)且僅當(dāng)時取等,.所以的面積的最大值為.【題目點(diǎn)撥】本題考查了正余弦定理在解三角形中的應(yīng)用,考查了三角形面積的最值問題,難度較易.18、(1);(2)見解析.【解題分析】

(1)將轉(zhuǎn)化為對任意恒成立,令,故只需,即可求出的值;(2)由(1)知,可得,令,可證,使得,從而可確定在上單調(diào)遞減,在上單調(diào)遞增,進(jìn)而可得,即,即可證出.【題目詳解】函數(shù)的定義域為,因為對任意恒成立,即對任意恒成立,令,則,當(dāng)時,,故在上單調(diào)遞增,又,所以當(dāng)時,,不符合題意;當(dāng)時,令得,當(dāng)時,;當(dāng)時,,所以在上單調(diào)遞增,在上單調(diào)遞減,所以,所以要使在時恒成立,則只需,即,令,,所以,當(dāng)時,;當(dāng)時,,所以在單調(diào)遞減,在上單調(diào)遞增,所以,即,又,所以,故滿足條件的的值只有(2)由(1)知,所以,令,則,當(dāng),時,即在上單調(diào)遞增;又,,所以,使得,當(dāng)時,;當(dāng)時,,即在上單調(diào)遞減,在上單調(diào)遞增,且所以,即,所以,即.【題目點(diǎn)撥】本題主要考查利用導(dǎo)數(shù)法求函數(shù)的最值及恒成立問題處理方法,第(2)問通過最值問題深化對函數(shù)的單調(diào)性的考查,同時考查轉(zhuǎn)化與化歸的思想,屬于中檔題.19、(1)(2)證明見解析【解題分析】

(1)根據(jù)公式得到,計算得到答案.(2),根據(jù)裂項求和法計算得到,得到證明.【題目詳解】(1)由已知得時,,故.故數(shù)列為等比數(shù)列,且公比.又當(dāng)時,,..(2)..【題目點(diǎn)撥】本題考查了數(shù)列通項公式和證明數(shù)列不等式,意在考查學(xué)生對于數(shù)列公式方法的綜合應(yīng)用.20、(1)證明見詳解;(2)【解題分析】

(1)求出函數(shù)的導(dǎo)函數(shù),由在處取得極值1,可得且.解出,構(gòu)造函數(shù),分析其單調(diào)性,結(jié)合,即可得到的范圍,命題得證;

(2)由分離參數(shù),得到恒成立,構(gòu)造函數(shù),求導(dǎo)函數(shù),再構(gòu)造函數(shù),進(jìn)行二次求導(dǎo).由知,則在上單調(diào)遞增.根據(jù)零點(diǎn)存在定理可知有唯一零點(diǎn),且.由此判斷出時,單調(diào)遞減,時,單調(diào)遞增,則,即.由得,再次構(gòu)造函數(shù),求導(dǎo)分析單調(diào)性,從而得,即,最終求得,則.【題目詳解】解:(1)由題知,∵函數(shù)在,處取得極值1,,且,,,令,則為增函數(shù),,即成立.(2)不等式恒成立,即不等式恒成

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論