版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆陜西省旬陽(yáng)中學(xué)高考沖刺(1)數(shù)學(xué)試題試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)拋物線上一點(diǎn)到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.32.函數(shù)(或)的圖象大致是()A. B. C. D.3.要得到函數(shù)的圖象,只需將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)()A.伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再將得到的圖象向右平移個(gè)單位長(zhǎng)度B.伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再將得到的圖像向左平移個(gè)單位長(zhǎng)度C.縮短到原來(lái)的倍(縱坐標(biāo)不變),再將得到的圖象向左平移個(gè)單位長(zhǎng)度D.縮短到原來(lái)的倍(縱坐標(biāo)不變),再將得到的圖象向右平移個(gè)單位長(zhǎng)度4.已知函數(shù)(,)的一個(gè)零點(diǎn)是,函數(shù)圖象的一條對(duì)稱(chēng)軸是直線,則當(dāng)取得最小值時(shí),函數(shù)的單調(diào)遞增區(qū)間是()A.() B.()C.() D.()5.已知向量,,=(1,),且在方向上的投影為,則等于()A.2 B.1 C. D.06.a(chǎn)為正實(shí)數(shù),i為虛數(shù)單位,,則a=()A.2 B. C. D.17.已知函數(shù)(,且)在區(qū)間上的值域?yàn)?,則()A. B. C.或 D.或48.有一改形塔幾何體由若千個(gè)正方體構(gòu)成,構(gòu)成方式如圖所示,上層正方體下底面的四個(gè)頂點(diǎn)是下層正方體上底面各邊的中點(diǎn).已知最底層正方體的棱長(zhǎng)為8,如果改形塔的最上層正方體的邊長(zhǎng)小于1,那么該塔形中正方體的個(gè)數(shù)至少是()A.8 B.7 C.6 D.49.設(shè)函數(shù),若函數(shù)有三個(gè)零點(diǎn),則()A.12 B.11 C.6 D.310.若直線的傾斜角為,則的值為()A. B. C. D.11.中國(guó)鐵路總公司相關(guān)負(fù)責(zé)人表示,到2018年底,全國(guó)鐵路營(yíng)業(yè)里程達(dá)到13.1萬(wàn)公里,其中高鐵營(yíng)業(yè)里程2.9萬(wàn)公里,超過(guò)世界高鐵總里程的三分之二,下圖是2014年到2018年鐵路和高鐵運(yùn)營(yíng)里程(單位:萬(wàn)公里)的折線圖,以下結(jié)論不正確的是()A.每相鄰兩年相比較,2014年到2015年鐵路運(yùn)營(yíng)里程增加最顯著B(niǎo).從2014年到2018年這5年,高鐵運(yùn)營(yíng)里程與年價(jià)正相關(guān)C.2018年高鐵運(yùn)營(yíng)里程比2014年高鐵運(yùn)營(yíng)里程增長(zhǎng)80%以上D.從2014年到2018年這5年,高鐵運(yùn)營(yíng)里程數(shù)依次成等差數(shù)列12.在的展開(kāi)式中,的系數(shù)為()A.-120 B.120 C.-15 D.15二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則的值為_(kāi)___14.拋物線上到其焦點(diǎn)距離為5的點(diǎn)有_______個(gè).15.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積是______.16.的展開(kāi)式中的系數(shù)為_(kāi)___.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知圓的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是是參數(shù)),若直線與圓相切,求實(shí)數(shù)的值.18.(12分)以直角坐標(biāo)系的原點(diǎn)為極坐標(biāo)系的極點(diǎn),軸的正半軸為極軸.已知曲線的極坐標(biāo)方程為,是上一動(dòng)點(diǎn),,點(diǎn)的軌跡為.(1)求曲線的極坐標(biāo)方程,并化為直角坐標(biāo)方程;(2)若點(diǎn),直線的參數(shù)方程(為參數(shù)),直線與曲線的交點(diǎn)為,當(dāng)取最小值時(shí),求直線的普通方程.19.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)若,證明.20.(12分)如圖,在四棱錐PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M為PC的中點(diǎn).(1)求異面直線AP,BM所成角的余弦值;(2)點(diǎn)N在線段AD上,且AN=λ,若直線MN與平面PBC所成角的正弦值為,求λ的值.21.(12分)已知曲線的參數(shù)方程為(為參數(shù)).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求的普通方程和的直角坐標(biāo)方程;(2)若過(guò)點(diǎn)的直線與交于,兩點(diǎn),與交于,兩點(diǎn),求的取值范圍.22.(10分)已知函數(shù).(1)設(shè),若存在兩個(gè)極值點(diǎn),,且,求證:;(2)設(shè),在不單調(diào),且恒成立,求的取值范圍.(為自然對(duì)數(shù)的底數(shù)).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解題分析】
分析:題設(shè)的直線與拋物線是相離的,可以化成,其中是點(diǎn)到準(zhǔn)線的距離,也就是到焦點(diǎn)的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無(wú)解,所以直線與拋物線是相離的.由,而為到準(zhǔn)線的距離,故為到焦點(diǎn)的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點(diǎn)睛:拋物線中與線段的長(zhǎng)度相關(guān)的最值問(wèn)題,可利用拋物線的幾何性質(zhì)把動(dòng)線段的長(zhǎng)度轉(zhuǎn)化為到準(zhǔn)線或焦點(diǎn)的距離來(lái)求解.2、A【解題分析】
確定函數(shù)的奇偶性,排除兩個(gè)選項(xiàng),再求時(shí)的函數(shù)值,再排除一個(gè),得正確選項(xiàng).【題目詳解】分析知,函數(shù)(或)為偶函數(shù),所以圖象關(guān)于軸對(duì)稱(chēng),排除B,C,當(dāng)時(shí),,排除D,故選:A.【題目點(diǎn)撥】本題考查由函數(shù)解析式選擇函數(shù)圖象,解題時(shí)可通過(guò)研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對(duì)稱(chēng)性等,研究特殊的函數(shù)的值、函數(shù)值的正負(fù),以及函數(shù)值的變化趨勢(shì),排除錯(cuò)誤選項(xiàng),得正確結(jié)論.3、B【解題分析】
分析:根據(jù)三角函數(shù)的圖象關(guān)系進(jìn)行判斷即可.詳解:將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),
得到再將得到的圖象向左平移個(gè)單位長(zhǎng)度得到故選B.點(diǎn)睛:本題主要考查三角函數(shù)的圖象變換,結(jié)合和的關(guān)系是解決本題的關(guān)鍵.4、B【解題分析】
根據(jù)函數(shù)的一個(gè)零點(diǎn)是,得出,再根據(jù)是對(duì)稱(chēng)軸,得出,求出的最小值與對(duì)應(yīng)的,寫(xiě)出即可求出其單調(diào)增區(qū)間.【題目詳解】依題意得,,即,解得或(其中,).①又,即(其中).②由①②得或,即或(其中,,),因此的最小值為.因?yàn)?,所以(?又,所以,所以,令(),則().因此,當(dāng)取得最小值時(shí),的單調(diào)遞增區(qū)間是().故選:B【題目點(diǎn)撥】此題考查三角函數(shù)的對(duì)稱(chēng)軸和對(duì)稱(chēng)點(diǎn),在對(duì)稱(chēng)軸處取得最值,對(duì)稱(chēng)點(diǎn)處函數(shù)值為零,屬于較易題目.5、B【解題分析】
先求出,再利用投影公式求解即可.【題目詳解】解:由已知得,由在方向上的投影為,得,則.故答案為:B.【題目點(diǎn)撥】本題考查向量的幾何意義,考查投影公式的應(yīng)用,是基礎(chǔ)題.6、B【解題分析】
,選B.7、C【解題分析】
對(duì)a進(jìn)行分類(lèi)討論,結(jié)合指數(shù)函數(shù)的單調(diào)性及值域求解.【題目詳解】分析知,.討論:當(dāng)時(shí),,所以,,所以;當(dāng)時(shí),,所以,,所以.綜上,或,故選C.【題目點(diǎn)撥】本題主要考查指數(shù)函數(shù)的值域問(wèn)題,指數(shù)函數(shù)的值域一般是利用單調(diào)性求解,側(cè)重考查數(shù)學(xué)運(yùn)算和數(shù)學(xué)抽象的核心素養(yǎng).8、A【解題分析】
則從下往上第二層正方體的棱長(zhǎng)為:,從下往上第三層正方體的棱長(zhǎng)為:,從下往上第四層正方體的棱長(zhǎng)為:,以此類(lèi)推,能求出改形塔的最上層正方體的邊長(zhǎng)小于1時(shí)該塔形中正方體的個(gè)數(shù)的最小值的求法.【題目詳解】最底層正方體的棱長(zhǎng)為8,則從下往上第二層正方體的棱長(zhǎng)為:,從下往上第三層正方體的棱長(zhǎng)為:,從下往上第四層正方體的棱長(zhǎng)為:,從下往上第五層正方體的棱長(zhǎng)為:,從下往上第六層正方體的棱長(zhǎng)為:,從下往上第七層正方體的棱長(zhǎng)為:,從下往上第八層正方體的棱長(zhǎng)為:,∴改形塔的最上層正方體的邊長(zhǎng)小于1,那么該塔形中正方體的個(gè)數(shù)至少是8.故選:A.【題目點(diǎn)撥】本小題主要考查正方體有關(guān)計(jì)算,屬于基礎(chǔ)題.9、B【解題分析】
畫(huà)出函數(shù)的圖象,利用函數(shù)的圖象判斷函數(shù)的零點(diǎn)個(gè)數(shù),然后轉(zhuǎn)化求解,即可得出結(jié)果.【題目詳解】作出函數(shù)的圖象如圖所示,令,由圖可得關(guān)于的方程的解有兩個(gè)或三個(gè)(時(shí)有三個(gè),時(shí)有兩個(gè)),所以關(guān)于的方程只能有一個(gè)根(若有兩個(gè)根,則關(guān)于的方程有四個(gè)或五個(gè)根),由,可得的值分別為,則故選B.【題目點(diǎn)撥】本題考查數(shù)形結(jié)合以及函數(shù)與方程的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力,屬于??碱}型.10、B【解題分析】
根據(jù)題意可得:,所求式子利用二倍角的正弦函數(shù)公式化簡(jiǎn),再利用同角三角函數(shù)間的基本關(guān)系弦化切后,將代入計(jì)算即可求出值.【題目詳解】由于直線的傾斜角為,所以,則故答案選B【題目點(diǎn)撥】本題考查二倍角的正弦函數(shù)公式,同角三角函數(shù)間的基本關(guān)系,以及直線傾斜角與斜率之間的關(guān)系,熟練掌握公式是解本題的關(guān)鍵.11、D【解題分析】
由折線圖逐項(xiàng)分析即可求解【題目詳解】選項(xiàng),顯然正確;對(duì)于,,選項(xiàng)正確;1.6,1.9,2.2,2.5,2.9不是等差數(shù)列,故錯(cuò).故選:D【題目點(diǎn)撥】本題考查統(tǒng)計(jì)的知識(shí),考查數(shù)據(jù)處理能力和應(yīng)用意識(shí),是基礎(chǔ)題12、C【解題分析】
寫(xiě)出展開(kāi)式的通項(xiàng)公式,令,即,則可求系數(shù).【題目詳解】的展開(kāi)式的通項(xiàng)公式為,令,即時(shí),系數(shù)為.故選C【題目點(diǎn)撥】本題考查二項(xiàng)式展開(kāi)的通項(xiàng)公式,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、4【解題分析】
根據(jù)的正負(fù)值,代入對(duì)應(yīng)的函數(shù)解析式求解即可.【題目詳解】解:.故答案為:.【題目點(diǎn)撥】本題考查分段函數(shù)函數(shù)值的求解,是基礎(chǔ)題.14、2【解題分析】
設(shè)符合條件的點(diǎn),由拋物線的定義可得,即可求解.【題目詳解】設(shè)符合條件的點(diǎn),則,所以符合條件的點(diǎn)有2個(gè).故答案為:2【題目點(diǎn)撥】本題考查拋物線的定義的應(yīng)用,考查拋物線的焦半徑.15、【解題分析】
先由三視圖在長(zhǎng)方體中將其還原成直觀圖,再利用球的直徑是長(zhǎng)方體體對(duì)角線即可解決.【題目詳解】由三視圖知該幾何體是一個(gè)三棱錐,如圖所示長(zhǎng)方體對(duì)角線長(zhǎng)為,所以三棱錐外接球半徑為,故所求外接球的表面積.故答案為:.【題目點(diǎn)撥】本題考查幾何體三視圖以及幾何體外接球的表面積,考查學(xué)生空間想象能力以及基本計(jì)算能力,是一道基礎(chǔ)題.16、28【解題分析】
將已知式轉(zhuǎn)化為,則的展開(kāi)式中的系數(shù)中的系數(shù),根據(jù)二項(xiàng)式展開(kāi)式可求得其值.【題目詳解】,所以的展開(kāi)式中的系數(shù)就是中的系數(shù),而中的系數(shù)為,展開(kāi)式中的系數(shù)為故答案為:28.【題目點(diǎn)撥】本題考查二項(xiàng)式展開(kāi)式中的某特定項(xiàng)的系數(shù),關(guān)鍵在于將原表達(dá)式化簡(jiǎn)將三項(xiàng)的冪的形式轉(zhuǎn)化為可求的二項(xiàng)式的形式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、【解題分析】
將圓的極坐標(biāo)方程化為直角坐標(biāo)方程,直線的參數(shù)方程化為普通方程,再根據(jù)直線與圓相切,利用圓心到直線的距離等于半徑,即可求實(shí)數(shù)的值.【題目詳解】由,得,,即圓的方程為,又由消,得,直線與圓相切,,.【題目點(diǎn)撥】本題重點(diǎn)考查方程的互化,考查直線與圓的位置關(guān)系,解題的關(guān)鍵是利用圓心到直線的距離等于半徑,研究直線與圓相切.18、(1),;(2).【解題分析】
(1)設(shè)點(diǎn)極坐標(biāo)分別為,,由可得,整理即可得到極坐標(biāo)方程,進(jìn)而求得直角坐標(biāo)方程;(2)設(shè)點(diǎn)對(duì)應(yīng)的參數(shù)分別為,則,,將直線的參數(shù)方程代入的直角坐標(biāo)方程中,再利用韋達(dá)定理可得,,則,求得取最小值時(shí)符合的條件,進(jìn)而求得直線的普通方程.【題目詳解】(1)設(shè)點(diǎn)極坐標(biāo)分別為,,因?yàn)?則,所以曲線的極坐標(biāo)方程為,兩邊同乘,得,所以的直角坐標(biāo)方程為,即.(2)設(shè)點(diǎn)對(duì)應(yīng)的參數(shù)分別為,則,,將直線的參數(shù)方程(參數(shù)),代入的直角坐標(biāo)方程中,整理得.由韋達(dá)定理得,,所以,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,則,所以當(dāng)取得最小值時(shí),直線的普通方程為.【題目點(diǎn)撥】本題考查極坐標(biāo)與直角坐標(biāo)方程的轉(zhuǎn)化,考查利用直線的參數(shù)方程研究直線與圓的位置關(guān)系.19、(1)單調(diào)遞減區(qū)間為,,無(wú)單調(diào)遞增區(qū)間(2)證明見(jiàn)解析【解題分析】
(1)求導(dǎo),根據(jù)導(dǎo)數(shù)的正負(fù)判斷單調(diào)性,(2)整理,化簡(jiǎn)為,令,求的單調(diào)性,以及,即證.【題目詳解】解:(1)函數(shù)定義域?yàn)?,則,令,,則,當(dāng),,單調(diào)遞減;當(dāng),,單調(diào)遞增;故,,,,故函數(shù)的單調(diào)遞減區(qū)間為,,無(wú)單調(diào)遞增區(qū)間.(2)證明,即為,因?yàn)椋醋C,令,則,令,則,當(dāng)時(shí),,所以在上單調(diào)遞減,則,,則在上恒成立,所以在上單調(diào)遞減,所以要證原不等式成立,只需證當(dāng)時(shí),,令,,,可知對(duì)于恒成立,即,即,故,即證,故原不等式得證.【題目點(diǎn)撥】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)證明不等式,函數(shù)的最值問(wèn)題,屬于中檔題.20、(1).(2)1【解題分析】
(1)先根據(jù)題意建立空間直角坐標(biāo)系,求得向量和向量的坐標(biāo),再利用線線角的向量方法求解.(2,由AN=λ,設(shè)N(0,λ,0)(0≤λ≤4),則=(-1,λ-1,-2),再求得平面PBC的一個(gè)法向量,利用直線MN與平面PBC所成角的正弦值為,由|cos〈,〉|===求解.【題目詳解】(1)因?yàn)镻A⊥平面ABCD,且AB,AD?平面ABCD,所以PA⊥AB,PA⊥AD.又因?yàn)椤螧AD=90°,所以PA,AB,AD兩兩互相垂直.分別以AB,AD,AP為x,y,z軸建立空間直角坐標(biāo)系,則由AD=2AB=2BC=4,PA=4可得A(0,0,0),B(2,0,0),C(2,2,0),D(0,4,0),P(0,0,4).又因?yàn)镸為PC的中點(diǎn),所以M(1,1,2).所以=(-1,1,2),=(0,0,4),所以cos〈,〉===,所以異面直線AP,BM所成角的余弦值為.(2)因?yàn)锳N=λ,所以N(0,λ,0)(0≤λ≤4),則=(-1,λ-1,-2),=(0,2,0),=(2,0,-4).設(shè)平面PBC的法向量為=(x,y,z),則即令x=2,解得y=0,z=1,所以=(2,0,1)是平面PBC的一個(gè)法向量.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年臨時(shí)搬運(yùn)合同
- 2024年度某新能源汽車(chē)制造技術(shù)許可合同
- 2024年度文化娛樂(lè)活動(dòng)策劃合同
- 2024年廣播劇配音委托合同
- 2024年建筑工程地面建設(shè)合同
- 企業(yè)普通員工年終個(gè)人工作總結(jié)
- 2024年度風(fēng)力發(fā)電設(shè)備安裝合同
- 節(jié)能宣傳課件教學(xué)課件
- 2024醫(yī)療機(jī)構(gòu)人力資源共享與培訓(xùn)合同
- 2024年度碎石料供需合同
- 護(hù)士與醫(yī)生的合作與溝通
- GB 42295-2022電動(dòng)自行車(chē)電氣安全要求
- 產(chǎn)品系統(tǒng)設(shè)計(jì)開(kāi)發(fā) 課件 第4、5章 產(chǎn)品系統(tǒng)設(shè)計(jì)類(lèi)型、產(chǎn)品系統(tǒng)設(shè)計(jì)開(kāi)發(fā)綜合案例
- 1編譯原理及實(shí)現(xiàn)課后題及答案
- 焊接材料的質(zhì)量控制和追溯規(guī)范
- 讓閱讀成為習(xí)慣家長(zhǎng)會(huì)課件
- 家庭健康照護(hù)服務(wù)方案
- 施工方案 誰(shuí)編
- 滬教牛津版八上英語(yǔ)Unit-6-單元完整課件
- 新能源及多能互補(bǔ)互補(bǔ)技術(shù)
- 混凝土攪拌站安裝及拆除方案
評(píng)論
0/150
提交評(píng)論