版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
駐馬店市重點中學2024屆高三第二十次考試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某市氣象部門根據2018年各月的每天最高氣溫平均數據,繪制如下折線圖,那么,下列敘述錯誤的是()A.各月最高氣溫平均值與最低氣溫平均值總體呈正相關B.全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大C.全年中各月最低氣溫平均值不高于10°C的月份有5個D.從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢2.若函數的定義域為M={x|-2≤x≤2},值域為N={y|0≤y≤2},則函數的圖像可能是()A. B. C. D.3.設,且,則()A. B. C. D.4.已知、分別是雙曲線的左、右焦點,過作雙曲線的一條漸近線的垂線,分別交兩條漸近線于點、,過點作軸的垂線,垂足恰為,則雙曲線的離心率為()A. B. C. D.5.已知平面向量,滿足,且,則與的夾角為()A. B. C. D.6.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}時,A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.?7.已知函數的圖象與直線的相鄰交點間的距離為,若定義,則函數,在區(qū)間內的圖象是()A. B.C. D.8.如圖,在平面四邊形ABCD中,若點E為邊CD上的動點,則的最小值為()A. B. C. D.9.我國南北朝時的數學著作《張邱建算經》有一道題為:“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中間四人未到者,亦依次更給,問各得金幾何?”則在該問題中,等級較高的二等人所得黃金比等級較低的九等人所得黃金()A.多1斤 B.少1斤 C.多斤 D.少斤10.已知拋物線上一點的縱坐標為4,則點到拋物線焦點的距離為()A.2 B.3 C.4 D.511.如圖是正方體截去一個四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.12.已知函數的圖象的一條對稱軸為,將函數的圖象向右平行移動個單位長度后得到函數圖象,則函數的解析式為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在直角坐標系中,直線的參數方程為(為參數),曲線的參數方程為(為參數).(1)求直線和曲線的普通方程;(2)設為曲線上的動點,求點到直線距離的最小值及此時點的坐標.14.設,滿足條件,則的最大值為__________.15.已知矩形ABCD,AB=4,BC=3,以A,B為焦點,且過C,D兩點的雙曲線的離心率為____________.16.已知數列的前項和為且滿足,則數列的通項_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,拋物線C:,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為().(1)求拋物線C的極坐標方程;(2)若拋物線C與直線l交于A,B兩點,求的值.18.(12分)如圖,在四棱錐中,,,,和均為邊長為的等邊三角形.(1)求證:平面平面;(2)求二面角的余弦值.19.(12分)在如圖所示的多面體中,平面平面,四邊形是邊長為2的菱形,四邊形為直角梯形,四邊形為平行四邊形,且,,(1)若分別為,的中點,求證:平面;(2)若,與平面所成角的正弦值,求二面角的余弦值.20.(12分)已知數列滿足,且.(1)求證:數列是等差數列,并求出數列的通項公式;(2)求數列的前項和.21.(12分)已知圓上有一動點,點的坐標為,四邊形為平行四邊形,線段的垂直平分線交于點.(Ⅰ)求點的軌跡的方程;(Ⅱ)過點作直線與曲線交于兩點,點的坐標為,直線與軸分別交于兩點,求證:線段的中點為定點,并求出面積的最大值.22.(10分)設函數,(1)當,,求不等式的解集;(2)已知,,的最小值為1,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】
根據折線圖依次判斷每個選項得到答案.【題目詳解】由繪制出的折線圖知:在A中,各月最高氣溫平均值與最低氣溫平均值為正相關,故A正確;在B中,全年中,2月的最高氣溫平均值與最低氣溫平均值的差值最大,故B正確;在C中,全年中各月最低氣溫平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5個,故C正確;在D中,從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值,先上升后下降,故D錯誤.故選:D.【題目點撥】本題考查了折線圖,意在考查學生的理解能力.2、B【解題分析】因為對A不符合定義域當中的每一個元素都有象,即可排除;對B滿足函數定義,故符合;對C出現了定義域當中的一個元素對應值域當中的兩個元素的情況,不符合函數的定義,從而可以否定;對D因為值域當中有的元素沒有原象,故可否定.故選B.3、C【解題分析】
將等式變形后,利用二次根式的性質判斷出,即可求出的范圍.【題目詳解】即故選:C【題目點撥】此題考查解三角函數方程,恒等變化后根據的關系即可求解,屬于簡單題目.4、B【解題分析】
設點位于第二象限,可求得點的坐標,再由直線與直線垂直,轉化為兩直線斜率之積為可得出的值,進而可求得雙曲線的離心率.【題目詳解】設點位于第二象限,由于軸,則點的橫坐標為,縱坐標為,即點,由題意可知,直線與直線垂直,,,因此,雙曲線的離心率為.故選:B.【題目點撥】本題考查雙曲線離心率的計算,解答的關鍵就是得出、、的等量關系,考查計算能力,屬于中等題.5、C【解題分析】
根據,兩邊平方,化簡得,再利用數量積定義得到求解.【題目詳解】因為平面向量,滿足,且,所以,所以,所以,所以,所以與的夾角為.故選:C【題目點撥】本題主要考查平面向量的模,向量的夾角和數量積運算,屬于基礎題.6、B【解題分析】試題分析:由集合A中的函數y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函數考點:交集及其運算.7、A【解題分析】
由題知,利用求出,再根據題給定義,化簡求出的解析式,結合正弦函數和正切函數圖象判斷,即可得出答案.【題目詳解】根據題意,的圖象與直線的相鄰交點間的距離為,所以的周期為,則,所以,由正弦函數和正切函數圖象可知正確.故選:A.【題目點撥】本題考查三角函數中正切函數的周期和圖象,以及正弦函數的圖象,解題關鍵是對新定義的理解.8、A【解題分析】
分析:由題意可得為等腰三角形,為等邊三角形,把數量積分拆,設,數量積轉化為關于t的函數,用函數可求得最小值。詳解:連接BD,取AD中點為O,可知為等腰三角形,而,所以為等邊三角形,。設=所以當時,上式取最小值,選A.點睛:本題考查的是平面向量基本定理與向量的拆分,需要選擇合適的基底,再把其它向量都用基底表示。同時利用向量共線轉化為函數求最值。9、C【解題分析】設這十等人所得黃金的重量從大到小依次組成等差數列則由等差數列的性質得,故選C10、D【解題分析】試題分析:拋物線焦點在軸上,開口向上,所以焦點坐標為,準線方程為,因為點A的縱坐標為4,所以點A到拋物線準線的距離為,因為拋物線上的點到焦點的距離等于到準線的距離,所以點A與拋物線焦點的距離為5.考點:本小題主要考查應用拋物線定義和拋物線上點的性質拋物線上的點到焦點的距離,考查學生的運算求解能力.點評:拋物線上的點到焦點的距離等于到準線的距離,這條性質在解題時經常用到,可以簡化運算.11、C【解題分析】
根據三視圖作出幾何體的直觀圖,結合三視圖的數據可求得幾何體的體積.【題目詳解】根據三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.【題目點撥】本題考查利用三視圖計算幾何體的體積,考查空間想象能力與計算能力,屬于基礎題.12、C【解題分析】
根據輔助角公式化簡三角函數式,結合為函數的一條對稱軸可求得,代入輔助角公式得的解析式.根據三角函數圖像平移變換,即可求得函數的解析式.【題目詳解】函數,由輔助角公式化簡可得,因為為函數圖象的一條對稱軸,代入可得,即,化簡可解得,即,所以將函數的圖象向右平行移動個單位長度可得,則,故選:C.【題目點撥】本題考查了輔助角化簡三角函數式的應用,三角函數對稱軸的應用,三角函數圖像平移變換的應用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、(1),;(2),.【解題分析】
(1)利用代入消參的方法即可將兩個參數方程轉化為普通方程;(2)利用參數方程,結合點到直線的距離公式,將問題轉化為求解二次函數最值的問題,即可求得.【題目詳解】(1)直線的普通方程為.在曲線的參數方程中,,所以曲線的普通方程為.(2)設點.點到直線的距離.當時,,所以點到直線的距離的最小值為.此時點的坐標為.【題目點撥】本題考查將參數方程轉化為普通方程,以及利用參數方程求距離的最值問題,屬中檔題.14、【解題分析】
作出可行域,由得,平移直線,數形結合可求的最大值.【題目詳解】作出可行域如圖所示由得,則是直線在軸上的截距.平移直線,當直線經過可行域內的點時,最小,此時最大.解方程組,得,..故答案為:.【題目點撥】本題考查簡單的線性規(guī)劃,屬于基礎題.15、2【解題分析】
根據為焦點,得;又求得,從而得到離心率.【題目詳解】為焦點在雙曲線上,則又本題正確結果:【題目點撥】本題考查利用雙曲線的定義求解雙曲線的離心率問題,屬于基礎題.16、【解題分析】
先求得時;再由可得時,兩式作差可得,進而求解.【題目詳解】當時,,解得;由,可知當時,,兩式相減,得,即,所以數列是首項為,公比為的等比數列,所以,故答案為:【題目點撥】本題考查由與的關系求通項公式,考查等比數列的通項公式的應用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】
(1)利用極坐標和直角坐標的互化公式,,即可求得結果.(2)由的幾何意義得,.將代入拋物線C的方程,利用韋達定理,,即可求得結果.【題目詳解】(1)因為,,代入得,所以拋物線C的極坐標方程為.(2)將代入拋物線C的方程得,所以,,所以,由的幾何意義得,.【題目點撥】本題考查直角坐標和極坐標的轉化,考查極坐標方程的綜合應用,考查了學生綜合分析,轉化與劃歸,數學運算的能力,難度一般.18、(1)見證明;(2)【解題分析】
(1)取的中點,連接,要證平面平面,轉證平面,即證,即可;(2)以為坐標原點,以為軸正方向,建立如圖所示的空間直角坐標系,分別求出平面與平面的法向量,代入公式,即可得到結果.【題目詳解】(1)取的中點,連接,因為均為邊長為的等邊三角形,所以,,且因為,所以,所以,又因為,平面,平面,所以平面.又因為平面,所以平面平面.(2)因為,為等邊三角形,所以,又因為,所以,,在中,由正弦定理,得:,所以.以為坐標原點,以為軸正方向,建立如圖所示的空間直角坐標系,則,,,,,設平面的法向量為,則,即,令,則平面的一個法向量為,依題意,平面的一個法向量所以故二面角的余弦值為.【題目點撥】空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當的空間直角坐標系;(2)寫出相應點的坐標,求出相應直線的方向向量;(3)設出相應平面的法向量,利用兩直線垂直數量積為零列出方程組求出法向量;(4)將空間位置關系轉化為向量關系;(5)根據定理結論求出相應的角和距離.19、(1)見解析(2)【解題分析】試題分析:(1)第(1)問,轉化成證明平面,再轉化成證明和.(2)第(2)問,先利用幾何法找到與平面所成角,再根據與平面所成角的正弦值為求出再建立空間直角坐標系,求出二面角的余弦值.試題解析:(1)連接,因為四邊形為菱形,所以.因為平面平面,平面平面,平面,,所以平面.又平面,所以.因為,所以.因為,所以平面.因為分別為,的中點,所以,所以平面(2)設,由(1)得平面.由,,得,.過點作,與的延長線交于點,取的中點,連接,,如圖所示,又,所以為等邊三角形,所以,又平面平面,平面平面,平面,故平面.因為為平行四邊形,所以,所以平面.又因為,所以平面.因為,所以平面平面.由(1),得平面,所以平面,所以.因為,所以平面,所以是與平面所成角.因為,,所以平面,平面,因為,所以平面平面.所以,,解得.在梯形中,易證,分別以,,的正方向為軸,軸,軸的正方向建立空間直角坐標系.則,,,,,,由,及,得,所以,,.設平面的一個法向量為,由得令,得m=(3,1,2)設平面的一個法向量為,由得令,得.所以又因為二面角是鈍角,所以二面角的余弦值是.20、(1)證明見解析,;(2).【解題分析】
(1)將等式變形為,進而可證明出是等差數列,確定數列的首項和公差,可求得的表達式,進而
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論