2024年吉林省吉林市蛟河市朝鮮族中學(xué)校高三上數(shù)學(xué)期末考試試題含解析_第1頁
2024年吉林省吉林市蛟河市朝鮮族中學(xué)校高三上數(shù)學(xué)期末考試試題含解析_第2頁
2024年吉林省吉林市蛟河市朝鮮族中學(xué)校高三上數(shù)學(xué)期末考試試題含解析_第3頁
2024年吉林省吉林市蛟河市朝鮮族中學(xué)校高三上數(shù)學(xué)期末考試試題含解析_第4頁
2024年吉林省吉林市蛟河市朝鮮族中學(xué)校高三上數(shù)學(xué)期末考試試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024年吉林省吉林市蛟河市朝鮮族中學(xué)校高三上數(shù)學(xué)期末考試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列函數(shù)中,在區(qū)間上為減函數(shù)的是()A. B. C. D.2.如圖在一個的二面角的棱有兩個點,線段分別在這個二面角的兩個半平面內(nèi),且都垂直于棱,且,則的長為()A.4 B. C.2 D.3.已知數(shù)列是公差為的等差數(shù)列,且成等比數(shù)列,則()A.4 B.3 C.2 D.14.若復(fù)數(shù)滿足,則(其中為虛數(shù)單位)的最大值為()A.1 B.2 C.3 D.45.使得的展開式中含有常數(shù)項的最小的n為()A. B. C. D.6.集合的子集的個數(shù)是()A.2 B.3 C.4 D.87.用一個平面去截正方體,則截面不可能是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形8.設(shè)不等式組表示的平面區(qū)域為,若從圓:的內(nèi)部隨機選取一點,則取自的概率為()A. B. C. D.9.已知函數(shù),關(guān)于x的方程f(x)=a存在四個不同實數(shù)根,則實數(shù)a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)10.已知復(fù)數(shù)(為虛數(shù)單位,),則在復(fù)平面內(nèi)對應(yīng)的點所在的象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.若(),,則()A.0或2 B.0 C.1或2 D.112.函數(shù),,的部分圖象如圖所示,則函數(shù)表達(dá)式為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在邊長為2的正三角形中,,則的取值范圍為______.14.已知函數(shù)的最大值為3,的圖象與y軸的交點坐標(biāo)為,其相鄰兩條對稱軸間的距離為2,則15.在平面直角坐標(biāo)系中,曲線在點處的切線與x軸相交于點A,其中e為自然對數(shù)的底數(shù).若點,的面積為3,則的值是______.16.若,則________,________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖1,已知四邊形BCDE為直角梯形,,,且,A為BE的中點將沿AD折到位置如圖,連結(jié)PC,PB構(gòu)成一個四棱錐.(Ⅰ)求證;(Ⅱ)若平面.①求二面角的大小;②在棱PC上存在點M,滿足,使得直線AM與平面PBC所成的角為,求的值.18.(12分)已知橢圓的短軸長為,左右焦點分別為,,點是橢圓上位于第一象限的任一點,且當(dāng)時,.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若橢圓上點與點關(guān)于原點對稱,過點作垂直于軸,垂足為,連接并延長交于另一點,交軸于點.(?。┣竺娣e最大值;(ⅱ)證明:直線與斜率之積為定值.19.(12分)在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù))和曲線(為參數(shù)),以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求直線和曲線的極坐標(biāo)方程;(2)在極坐標(biāo)系中,已知點是射線與直線的公共點,點是與曲線的公共點,求的最大值.20.(12分)如圖:在中,,,.(1)求角;(2)設(shè)為的中點,求中線的長.21.(12分)如圖,三棱臺的底面是正三角形,平面平面,.(1)求證:;(2)若,求直線與平面所成角的正弦值.22.(10分)在直角坐標(biāo)系中,曲線上的任意一點到直線的距離比點到點的距離小1.(1)求動點的軌跡的方程;(2)若點是圓上一動點,過點作曲線的兩條切線,切點分別為,求直線斜率的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

利用基本初等函數(shù)的單調(diào)性判斷各選項中函數(shù)在區(qū)間上的單調(diào)性,進(jìn)而可得出結(jié)果.【詳解】對于A選項,函數(shù)在區(qū)間上為增函數(shù);對于B選項,函數(shù)在區(qū)間上為增函數(shù);對于C選項,函數(shù)在區(qū)間上為減函數(shù);對于D選項,函數(shù)在區(qū)間上為增函數(shù).故選:C.【點睛】本題考查函數(shù)在區(qū)間上單調(diào)性的判斷,熟悉一些常見的基本初等函數(shù)的單調(diào)性是判斷的關(guān)鍵,屬于基礎(chǔ)題.2、A【解析】

由,兩邊平方后展開整理,即可求得,則的長可求.【詳解】解:,,,,,,.,,故選:.【點睛】本題考查了向量的多邊形法則、數(shù)量積的運算性質(zhì)、向量垂直與數(shù)量積的關(guān)系,考查了空間想象能力,考查了推理能力與計算能力,屬于中檔題.3、A【解析】

根據(jù)等差數(shù)列和等比數(shù)列公式直接計算得到答案.【詳解】由成等比數(shù)列得,即,已知,解得.故選:.【點睛】本題考查了等差數(shù)列,等比數(shù)列的基本量的計算,意在考查學(xué)生的計算能力.4、B【解析】

根據(jù)復(fù)數(shù)的幾何意義可知復(fù)數(shù)對應(yīng)的點在以原點為圓心,1為半徑的圓上,再根據(jù)復(fù)數(shù)的幾何意義即可確定,即可得的最大值.【詳解】由知,復(fù)數(shù)對應(yīng)的點在以原點為圓心,1為半徑的圓上,表示復(fù)數(shù)對應(yīng)的點與點間的距離,又復(fù)數(shù)對應(yīng)的點所在圓的圓心到的距離為1,所以.故選:B【點睛】本題考查了復(fù)數(shù)模的定義及其幾何意義應(yīng)用,屬于基礎(chǔ)題.5、B【解析】二項式展開式的通項公式為,若展開式中有常數(shù)項,則,解得,當(dāng)r取2時,n的最小值為5,故選B【考點定位】本題考查二項式定理的應(yīng)用.6、D【解析】

先確定集合中元素的個數(shù),再得子集個數(shù).【詳解】由題意,有三個元素,其子集有8個.故選:D.【點睛】本題考查子集的個數(shù)問題,含有個元素的集合其子集有個,其中真子集有個.7、C【解析】試題分析:畫出截面圖形如圖顯然A正三角形,B正方形:D正六邊形,可以畫出五邊形但不是正五邊形;故選C.考點:平面的基本性質(zhì)及推論.8、B【解析】

畫出不等式組表示的可行域,求得陰影部分扇形對應(yīng)的圓心角,根據(jù)幾何概型概率計算公式,計算出所求概率.【詳解】作出中在圓內(nèi)部的區(qū)域,如圖所示,因為直線,的傾斜角分別為,,所以由圖可得取自的概率為.故選:B【點睛】本小題主要考查幾何概型的計算,考查線性可行域的畫法,屬于基礎(chǔ)題.9、D【解析】

原問題轉(zhuǎn)化為有四個不同的實根,換元處理令t,對g(t)進(jìn)行零點個數(shù)討論.【詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當(dāng)t<2時,g(t)=2ln(﹣t)(t)單調(diào)遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調(diào)遞增,在(2,+∞)上單調(diào)遞減.由,可得,即a<2.∴實數(shù)a的取值范圍是(2,2).故選:D.【點睛】此題考查方程的根與函數(shù)零點問題,關(guān)鍵在于等價轉(zhuǎn)化,將問題轉(zhuǎn)化為通過導(dǎo)函數(shù)討論函數(shù)單調(diào)性解決問題.10、B【解析】

分別比較復(fù)數(shù)的實部、虛部與0的大小關(guān)系,可判斷出在復(fù)平面內(nèi)對應(yīng)的點所在的象限.【詳解】因為時,所以,,所以復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于第二象限.故選:B.【點睛】本題考查復(fù)數(shù)的幾何意義,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.11、A【解析】

利用復(fù)數(shù)的模的運算列方程,解方程求得的值.【詳解】由于(),,所以,解得或.故選:A【點睛】本小題主要考查復(fù)數(shù)模的運算,屬于基礎(chǔ)題.12、A【解析】

根據(jù)圖像的最值求出,由周期求出,可得,再代入特殊點求出,化簡即得所求.【詳解】由圖像知,,,解得,因為函數(shù)過點,所以,,即,解得,因為,所以,.故選:A【點睛】本題考查根據(jù)圖像求正弦型函數(shù)的解析式,三角函數(shù)誘導(dǎo)公式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

建立直角坐標(biāo)系,依題意可求得,而,,,故可得,且,由此構(gòu)造函數(shù),,利用二次函數(shù)的性質(zhì)即可求得取值范圍.【詳解】建立如圖所示的平面直角坐標(biāo)系,則,,,設(shè),,,,根據(jù),即,,,則,,即,,,則,,所以,,,,,,且,故,設(shè),,易知二次函數(shù)的對稱軸為,故函數(shù)在,上的最大值為,最小值為,故的取值范圍為.故答案為:.【點睛】本題考查平面向量數(shù)量積的坐標(biāo)運算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意通過設(shè)元、消元,將問題轉(zhuǎn)化為元二次函數(shù)的值域問題.14、【解析】,由題意,得,解得,則的周期為4,且,所以.考點:三角函數(shù)的圖像與性質(zhì).15、【解析】

對求導(dǎo),再根據(jù)點的坐標(biāo)可得切線方程,令,可得點橫坐標(biāo),由的面積為3,求解即得.【詳解】由題,,切線斜率,則切線方程為,令,解得,又的面積為3,,解得.故答案為:【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的切線,難度不大.16、【解析】

根據(jù)誘導(dǎo)公式和二倍角公式計算得到答案.【詳解】,故.故答案為:;.【點睛】本題考查了誘導(dǎo)公式和二倍角公式,屬于簡單題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、Ⅰ詳見解析;Ⅱ①,②或.【解析】

Ⅰ可以通過已知證明出平面PAB,這樣就可以證明出;Ⅱ以點A為坐標(biāo)原點,分別以AB,AD,AP為x,y,z軸,建立空間直角坐標(biāo)系,可以求出相應(yīng)點的坐標(biāo),求出平面PBC的法向量為、平面PCD的法向量,利用空間向量的數(shù)量積,求出二面角的大??;求出平面PBC的法向量,利用線面角的公式求出的值.【詳解】證明:Ⅰ在圖1中,,,為平行四邊形,,,,當(dāng)沿AD折起時,,,即,,又,平面PAB,又平面PAB,.解:Ⅱ以點A為坐標(biāo)原點,分別以AB,AD,AP為x,y,z軸,建立空間直角坐標(biāo)系,由于平面ABCD則0,,0,,1,,0,,1,1,,1,,0,,設(shè)平面PBC的法向量為y,,則,取,得0,,設(shè)平面PCD的法向量b,,則,取,得1,,設(shè)二面角的大小為,可知為鈍角,則,.二面角的大小為.設(shè)AM與面PBC所成角為,0,,1,,,,平面PBC的法向量0,,直線AM與平面PBC所成的角為,,解得或.【點睛】本題考查了利用線面垂直證明線線垂直,考查了利用向量數(shù)量積,求二面角的大小以及通過線面角公式求定比分點問題.18、(1);(2)(ⅰ);(ⅱ)證明見解析.【解析】

(1)由,解方程組即可得到答案;(2)(?。┰O(shè),,則,,易得,注意到,利用基本不等式得到的最大值即可得到答案;(ⅱ)設(shè)直線斜率為,直線方程為,聯(lián)立橢圓方程得到的坐標(biāo),再利用兩點的斜率公式計算即可.【詳解】(1)設(shè),由,得.將代入,得,即,由,解得,所以橢圓的標(biāo)準(zhǔn)方程為.(2)設(shè),,則,(ⅰ)易知為的中位線,所以,所以,又滿足,所以,得,故,當(dāng)且僅當(dāng),即,時取等號,所以面積最大值為.(ⅱ)記直線斜率為,則直線斜率為,所以直線方程為.由,得,由韋達(dá)定理得,所以,代入直線方程,得,于是,直線斜率,所以直線與斜率之積為定值.【點睛】本題考查直線與橢圓的位置關(guān)系,涉及到橢圓中的最值及定值問題,在解橢圓與直線的位置關(guān)系的答題時,一般會用到根與系數(shù)的關(guān)系,考查學(xué)生的數(shù)學(xué)運算求解能力,是一道有一定難度的題.19、(1),;(2)【解析】

(1)先將直線l和圓C的參數(shù)方程化成普通方程,再分別求出極坐標(biāo)方程;(2)寫出點M和點N的極坐標(biāo),根據(jù)極徑的定義分別表示出和,利用三角函數(shù)的性質(zhì)求出的最大值.【詳解】解:(1),,即極坐標(biāo)方程為,,極坐標(biāo)方程.(2)由題可知,,當(dāng)時,.【點睛】本題考查了參數(shù)方程、普通方程和極坐標(biāo)方程的互化問題,極徑的定義,以及三角函數(shù)的恒等變換,屬于中檔題.20、(1);(2)【解析】

(1)通過求出的值,利用正弦定理求出即可得角;(2)根據(jù)求出的值,由正弦定理求出邊,最后在中由余弦定理即可得結(jié)果.【詳解】(1)∵,∴.由正弦定理,即.得,∵,∴為鈍角,為銳角,故.(2)∵,∴.由正弦定理得,即得.在中由余弦定理得:,∴.【點睛】本題主要考查了正弦定理和余弦定理在解三角形中的應(yīng)用,考查三角函數(shù)知識的運用,屬于中檔題.21、(Ⅰ)見證明;(Ⅱ)【解析】

(Ⅰ)取的中點為,連結(jié),易證四邊形為平行四邊形,即,由于,為的中點,可得到,從而得到,即可證明平面,從而得到;(Ⅱ)易證,,兩兩垂直,以,,分別為,,軸,建立如圖所示的空間直角坐標(biāo)系,求出平面的一個法向量為,設(shè)與平面所成角為,則,即可得到答案.【詳解】解:(Ⅰ)取的中點為,連結(jié).由是三棱臺得,平面平面,從而.∵,∴,∴四邊形為平行四邊形,∴.∵,為的中點,∴,∴.∵平面平面,且交線為,平面,∴平面,而平面,∴.(Ⅱ)連結(jié).由是正三角形,且為中點,則.由(Ⅰ)知,平面,,∴,,∴,,兩兩垂直.以,,分別為,,軸,建立如圖所示的空間直角坐標(biāo)系.設(shè),則,,,,∴,,.設(shè)平面的一個法向量為.由可得,.令,則,,∴.設(shè)與平面所成角為,則.【點睛】本題考查了空間幾何中,面面垂直的性質(zhì),線線垂直的證明,及線面角的求法,考查了學(xué)生的邏輯推理能力與計算求解能力,屬于中檔題.22、(1);(2)【解析】

(1)設(shè),根據(jù)題意可得點的軌跡方程滿足的等式,化簡即可求得動點的軌跡的方程;(2)設(shè)出切線的斜率分別為,切點,,點,則可得過點的拋物線的切線方程為,聯(lián)立拋物

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論