湖北省武漢市部分學校2024屆高三下學期第四次同步考試數(shù)學試題_第1頁
湖北省武漢市部分學校2024屆高三下學期第四次同步考試數(shù)學試題_第2頁
湖北省武漢市部分學校2024屆高三下學期第四次同步考試數(shù)學試題_第3頁
湖北省武漢市部分學校2024屆高三下學期第四次同步考試數(shù)學試題_第4頁
湖北省武漢市部分學校2024屆高三下學期第四次同步考試數(shù)學試題_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖北省武漢市部分學校2024屆高三下學期第四次同步考試數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設M是邊BC上任意一點,N為AM的中點,若,則的值為()A.1 B. C. D.2.命題“”的否定是()A. B.C. D.3.記單調(diào)遞增的等比數(shù)列的前項和為,若,,則()A. B. C. D.4.設,,是非零向量.若,則()A. B. C. D.5.已知實數(shù)、滿足不等式組,則的最大值為()A. B. C. D.6.已知等差數(shù)列的前13項和為52,則()A.256 B.-256 C.32 D.-327.設命題:,,則為A., B.,C., D.,8.若命題p:從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為三分之一;命題q:在邊長為4的正方形ABCD內(nèi)任取一點M,則∠AMB>90°的概率為π8A.p∧qB.(?p)∧qC.p∧(?q)D.?q9.在棱長為2的正方體ABCD?A1B1C1D1中,P為A1D1的中點,若三棱錐P?ABC的四個頂點都在球O的球面上,則球O的表面積為()A.12 B. C. D.1010.某大學計算機學院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲從人工智能領(lǐng)域的語音識別、人臉識別,數(shù)據(jù)分析、機器學習、服務器開發(fā)五個方向展開研究,且每個方向均有研究生學習,其中劉澤同學學習人臉識別,則這6名研究生不同的分配方向共有()A.480種 B.360種 C.240種 D.120種11.已知拋物線的焦點為,對稱軸與準線的交點為,為上任意一點,若,則()A.30° B.45° C.60° D.75°12.己知全集為實數(shù)集R,集合A={x|x2+2x-8>0},B={x|log2x<1},則等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)二、填空題:本題共4小題,每小題5分,共20分。13.設,滿足條件,則的最大值為__________.14.已知是等比數(shù)列,若,,且∥,則______.15.將一顆質(zhì)地均勻的正方體骰子(每個面上分別寫有數(shù)字1,2,3,4,5,6)先后拋擲2次,觀察向上的點數(shù),則點數(shù)之和是6的的概率是___.16.已知向量,,若,則實數(shù)______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直三棱柱中,分別是中點,且,.求證:平面;求點到平面的距離.18.(12分)如圖,在四棱錐中,,,,和均為邊長為的等邊三角形.(1)求證:平面平面;(2)求二面角的余弦值.19.(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求和的直角坐標方程;(2)已知為曲線上的一個動點,求線段的中點到直線的最大距離.20.(12分)已知函數(shù),.(1)求函數(shù)的極值;(2)當時,求證:.21.(12分)已知函數(shù).(1)當時,求的單調(diào)區(qū)間;(2)若函數(shù)有兩個極值點,,且,為的導函數(shù),設,求的取值范圍,并求取到最小值時所對應的的值.22.(10分)某工廠生產(chǎn)一種產(chǎn)品的標準長度為,只要誤差的絕對值不超過就認為合格,工廠質(zhì)檢部抽檢了某批次產(chǎn)品1000件,檢測其長度,繪制條形統(tǒng)計圖如圖:(1)估計該批次產(chǎn)品長度誤差絕對值的數(shù)學期望;(2)如果視該批次產(chǎn)品樣本的頻率為總體的概率,要求從工廠生產(chǎn)的產(chǎn)品中隨機抽取2件,假設其中至少有1件是標準長度產(chǎn)品的概率不小于0.8時,該設備符合生產(chǎn)要求.現(xiàn)有設備是否符合此要求?若不符合此要求,求出符合要求時,生產(chǎn)一件產(chǎn)品為標準長度的概率的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】

設,通過,再利用向量的加減運算可得,結(jié)合條件即可得解.【題目詳解】設,則有.又,所以,有.故選B.【題目點撥】本題考查了向量共線及向量運算知識,利用向量共線及向量運算知識,用基底向量向量來表示所求向量,利用平面向量表示法唯一來解決問題.2、D【解題分析】

根據(jù)全稱命題的否定是特稱命題,對命題進行改寫即可.【題目詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.【題目點撥】本題考查全稱命題的否定,難度容易.3、C【解題分析】

先利用等比數(shù)列的性質(zhì)得到的值,再根據(jù)的方程組可得的值,從而得到數(shù)列的公比,進而得到數(shù)列的通項和前項和,根據(jù)后兩個公式可得正確的選項.【題目詳解】因為為等比數(shù)列,所以,故即,由可得或,因為為遞增數(shù)列,故符合.此時,所以或(舍,因為為遞增數(shù)列).故,.故選C.【題目點撥】一般地,如果為等比數(shù)列,為其前項和,則有性質(zhì):(1)若,則;(2)公比時,則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.4、D【解題分析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點:平面向量數(shù)量積.【思路點睛】幾何圖形中向量的數(shù)量積問題是近幾年高考的又一熱點,作為一類既能考查向量的線性運算、坐標運算、數(shù)量積及平面幾何知識,又能考查學生的數(shù)形結(jié)合能力及轉(zhuǎn)化與化歸能力的問題,實有其合理之處.解決此類問題的常用方法是:①利用已知條件,結(jié)合平面幾何知識及向量數(shù)量積的基本概念直接求解(較易);②將條件通過向量的線性運算進行轉(zhuǎn)化,再利用①求解(較難);③建系,借助向量的坐標運算,此法對解含垂直關(guān)系的問題往往有很好效果.5、A【解題分析】

畫出不等式組所表示的平面區(qū)域,結(jié)合圖形確定目標函數(shù)的最優(yōu)解,代入即可求解,得到答案.【題目詳解】畫出不等式組所表示平面區(qū)域,如圖所示,由目標函數(shù),化為直線,當直線過點A時,此時直線在y軸上的截距最大,目標函數(shù)取得最大值,又由,解得,所以目標函數(shù)的最大值為,故選A.【題目點撥】本題主要考查簡單線性規(guī)劃求解目標函數(shù)的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標函數(shù)的最優(yōu)解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,及推理與計算能力,屬于基礎(chǔ)題.6、A【解題分析】

利用等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)可以求得結(jié)果.【題目詳解】由,,得.選A.【題目點撥】本題主要考查等差數(shù)列的求和公式及等差數(shù)列的性質(zhì),等差數(shù)列的等和性應用能快速求得結(jié)果.7、D【解題分析】

直接利用全稱命題的否定是特稱命題寫出結(jié)果即可.【題目詳解】因為全稱命題的否定是特稱命題,所以,命題:,,則為:,.故本題答案為D.【題目點撥】本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.8、B【解題分析】因為從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為P1=1C42=16,即命題p是錯誤,則?p是正確的;在邊長為4的正方形ABCD內(nèi)任取一點M點睛:本題將古典型概率公式、幾何型概率公式與命題的真假(含或、且、非等連接詞)的命題構(gòu)成的復合命題的真假的判定有機地整合在一起,旨在考查命題真假的判定及古典概型的特征與計算公式的運用、幾何概型的特征與計算公式的運用等知識與方法的綜合運用,以及分析問題解決問題的能力。9、C【解題分析】

取B1C1的中點Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,此直三棱柱和三棱錐P?ABC有相同的外接球,求出等腰三角形的外接圓半徑,然后利用勾股定理可求出外接球的半徑【題目詳解】如圖,取B1C1的中點Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,所以該直三棱柱的六個頂點都在球O的球面上,的外接圓直徑為,球O的半徑R滿足,所以球O的表面積S=4πR2=,故選:C.【題目點撥】此題考查三棱錐的外接球半徑與棱長的關(guān)系,及球的表面積公式,解題時要注意審題,注意空間思維能力的培養(yǎng),屬于中檔題.10、B【解題分析】

將人臉識別方向的人數(shù)分成:有人、有人兩種情況進行分類討論,結(jié)合捆綁計算出不同的分配方法數(shù).【題目詳解】當人臉識別方向有2人時,有種,當人臉識別方向有1人時,有種,∴共有360種.故選:B【題目點撥】本小題主要考查簡單排列組合問題,考查分類討論的數(shù)學思想方法,屬于基礎(chǔ)題.11、C【解題分析】

如圖所示:作垂直于準線交準線于,則,故,得到答案.【題目詳解】如圖所示:作垂直于準線交準線于,則,在中,,故,即.故選:.【題目點撥】本題考查了拋物線中角度的計算,意在考查學生的計算能力和轉(zhuǎn)化能力.12、D【解題分析】

求解一元二次不等式化簡A,求解對數(shù)不等式化簡B,然后利用補集與交集的運算得答案.【題目詳解】解:由x2+2x-8>0,得x<-4或x>2,

∴A={x|x2+2x-8>0}={x|x<-4或x>2},

由log2x<1,x>0,得0<x<2,

∴B={x|log2x<1}={x|0<x<2},

則,

∴.

故選:D.【題目點撥】本題考查了交、并、補集的混合運算,考查了對數(shù)不等式,二次不等式的求法,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

作出可行域,由得,平移直線,數(shù)形結(jié)合可求的最大值.【題目詳解】作出可行域如圖所示由得,則是直線在軸上的截距.平移直線,當直線經(jīng)過可行域內(nèi)的點時,最小,此時最大.解方程組,得,..故答案為:.【題目點撥】本題考查簡單的線性規(guī)劃,屬于基礎(chǔ)題.14、【解題分析】若,,且∥,則,由是等比數(shù)列,可知公比為..故答案為.15、【解題分析】

先求出基本事件總數(shù)6×6=36,再由列舉法求出“點數(shù)之和等于6”包含的基本事件的個數(shù),由此能求出“點數(shù)之和等于6”的概率.【題目詳解】基本事件總數(shù)6×6=36,點數(shù)之和是6包括共5種情況,則所求概率是.故答案為【題目點撥】本題考查古典概率的求法,是基礎(chǔ)題,解題時要認真審題,注意列舉法的合理運用.16、-2【解題分析】

根據(jù)向量坐標運算可求得,根據(jù)平行關(guān)系可構(gòu)造方程求得結(jié)果.【題目詳解】由題意得:,解得:本題正確結(jié)果:【題目點撥】本題考查向量的坐標運算,關(guān)鍵是能夠利用平行關(guān)系構(gòu)造出方程.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2).【解題分析】

(1)利用線面垂直的判定定理和性質(zhì)定理即可證明;(2)取中點為,則,證得平面,利用等體積法求解即可.【題目詳解】(1)因為,,,是的中點,,為直三棱柱,所以平面,因為為中點,所以平面,,又,平面(2),又分別是中點,.由(1)知,,又平面,取中點為,連接如圖,則,平面,設點到平面的距離為,由,得,即,解得,點到平面的距離為.【題目點撥】本題考查線面垂直的判定定理和性質(zhì)定理、等體積法求點到面的距離;考查邏輯推理能力和運算求解能力;熟練掌握線面垂直的判定定理和性質(zhì)定理是求解本題的關(guān)鍵;屬于中檔題.18、(1)見證明;(2)【解題分析】

(1)取的中點,連接,要證平面平面,轉(zhuǎn)證平面,即證,即可;(2)以為坐標原點,以為軸正方向,建立如圖所示的空間直角坐標系,分別求出平面與平面的法向量,代入公式,即可得到結(jié)果.【題目詳解】(1)取的中點,連接,因為均為邊長為的等邊三角形,所以,,且因為,所以,所以,又因為,平面,平面,所以平面.又因為平面,所以平面平面.(2)因為,為等邊三角形,所以,又因為,所以,,在中,由正弦定理,得:,所以.以為坐標原點,以為軸正方向,建立如圖所示的空間直角坐標系,則,,,,,設平面的法向量為,則,即,令,則平面的一個法向量為,依題意,平面的一個法向量所以故二面角的余弦值為.【題目點撥】空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當?shù)目臻g直角坐標系;(2)寫出相應點的坐標,求出相應直線的方向向量;(3)設出相應平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應的角和距離.19、(1)..(2)最大距離為.【解題分析】

(1)直接利用極坐標方程和參數(shù)方程的公式計算得到答案.(2)曲線的參數(shù)方程為,設,計算點到直線的距離公式得到答案.【題目詳解】(1)由,得,則曲線的直角坐標方程為,即.直線的直角坐標方程為.(2)可知曲線的參數(shù)方程為(為參數(shù)),設,,則到直線的距離為,所以線段的中點到直線的最大距離為.【題目點撥】本題考查了極坐標方程,參數(shù)方程,距離的最值問題,意在考查學生的計算能力.20、(1)的極小值為,無極大值.(2)見解析.【解題分析】

(1)對求導,確定函數(shù)單調(diào)性,得到函數(shù)極值.(2)構(gòu)造函數(shù),證明恒成立,得到,,得證.【題目詳解】(1)由題意知,,令,得,令,得.則在上單調(diào)遞減,在上單調(diào)遞增,所以的極小值為,無極大值.(2)當時,要證,即證.令,則,令,得,令,得,則在上單調(diào)遞減,在上單調(diào)遞增,所以當時,,所以,即.因為時,,所以當時,,所以當時,不等式成立.【題目點撥】本題考查了函數(shù)的單調(diào)性,極值,不等式的證明,構(gòu)造函數(shù)是解題的關(guān)鍵.21、(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(2)的取值范圍是;對應的的值為.【解題分析】

(1)當時,求的導數(shù)可得函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個極值點,,且,利用導函數(shù),可得的范圍,再表達,構(gòu)造新函數(shù)可求的取值范圍,從而可求取到最小值時所對應的的值.【題目詳解】(1)函數(shù)由條件得函數(shù)的定義域:,當時,,所以:,時,,當時,,當,時,,則函數(shù)的單調(diào)增區(qū)間為:,單調(diào)遞減區(qū)間為:,;(2)由條件得:,,由條件得有兩根:,,滿足,△,可得:或;由,可得:.,函數(shù)的對稱軸為,,所以:,;,可得:,,,則:,所以:;所以:,令,,,則,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論