版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024年安陽市重點中學高三上數學期末經典模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在直三棱柱中,己知,,,則異面直線與所成的角為()A. B. C. D.2.已知數列為等比數列,若,且,則()A. B.或 C. D.3.執(zhí)行如圖所示的程序框圖,則輸出的()A.2 B.3 C. D.4.已知正項等比數列中,存在兩項,使得,,則的最小值是()A. B. C. D.5.設α,β為兩個平面,則α∥β的充要條件是A.α內有無數條直線與β平行B.α內有兩條相交直線與β平行C.α,β平行于同一條直線D.α,β垂直于同一平面6.將函數的圖象分別向右平移個單位長度與向左平移(>0)個單位長度,若所得到的兩個圖象重合,則的最小值為()A. B. C. D.7.已知函數是上的偶函數,是的奇函數,且,則的值為()A. B. C. D.8.已知直線和平面,若,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.不充分不必要9.函數的部分圖像大致為()A. B.C. D.10.設點,P為曲線上動點,若點A,P間距離的最小值為,則實數t的值為()A. B. C. D.11.已知拋物線上的點到其焦點的距離比點到軸的距離大,則拋物線的標準方程為()A. B. C. D.12.若為虛數單位,則復數的共軛復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.已知均為非負實數,且,則的取值范圍為______.14.一個袋中裝著標有數字1,2,3,4,5的小球各2個,從中任意摸取3個小球,每個小球被取出的可能性相等,則取出的3個小球中數字最大的為4的概率是__.15.已知函數,若,則的取值范圍是__16.的展開式中,項的系數是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)若數列滿足:對于任意,均為數列中的項,則稱數列為“數列”.(1)若數列的前項和,,試判斷數列是否為“數列”?說明理由;(2)若公差為的等差數列為“數列”,求的取值范圍;(3)若數列為“數列”,,且對于任意,均有,求數列的通項公式.18.(12分)已知曲線的參數方程為為參數,曲線的參數方程為為參數).(1)求與的普通方程;(2)若與相交于,兩點,且,求的值.19.(12分)已知函數.(1)若函數,求的極值;(2)證明:.(參考數據:)20.(12分)已知直線與拋物線交于兩點.(1)當點的橫坐標之和為4時,求直線的斜率;(2)已知點,直線過點,記直線的斜率分別為,當取最大值時,求直線的方程.21.(12分)如圖,在平面直角坐標系中,橢圓的離心率為,且過點.求橢圓的方程;已知是橢圓的內接三角形,①若點為橢圓的上頂點,原點為的垂心,求線段的長;②若原點為的重心,求原點到直線距離的最小值.22.(10分)曲線的參數方程為(為參數),以原點為極點,軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為.(1)求曲線的極坐標方程和曲線的直角坐標方程;(2)若直線與曲線,的交點分別為、(、異于原點),當斜率時,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由條件可看出,則為異面直線與所成的角,可證得三角形中,,解得從而得出異面直線與所成的角.【詳解】連接,,如圖:又,則為異面直線與所成的角.因為且三棱柱為直三棱柱,∴∴面,∴,又,,∴,∴,解得.故選C【點睛】考查直三棱柱的定義,線面垂直的性質,考查了異面直線所成角的概念及求法,考查了邏輯推理能力,屬于基礎題.2、A【解析】
根據等比數列的性質可得,通分化簡即可.【詳解】由題意,數列為等比數列,則,又,即,所以,,.故選:A.【點睛】本題考查了等比數列的性質,考查了推理能力與運算能力,屬于基礎題.3、B【解析】
運行程序,依次進行循環(huán),結合判斷框,可得輸出值.【詳解】起始階段有,,第一次循環(huán)后,,第二次循環(huán)后,,第三次循環(huán)后,,第四次循環(huán)后,,所有后面的循環(huán)具有周期性,周期為3,當時,再次循環(huán)輸出的,,此時,循環(huán)結束,輸出,故選:B【點睛】本題主要考查程序框圖的相關知識,經過幾次循環(huán)找出規(guī)律是關鍵,屬于基礎題型.4、C【解析】
由已知求出等比數列的公比,進而求出,嘗試用基本不等式,但取不到等號,所以考慮直接取的值代入比較即可.【詳解】,,或(舍).,,.當,時;當,時;當,時,,所以最小值為.故選:C.【點睛】本題考查等比數列通項公式基本量的計算及最小值,屬于基礎題.5、B【解析】
本題考查了空間兩個平面的判定與性質及充要條件,滲透直觀想象、邏輯推理素養(yǎng),利用面面平行的判定定理與性質定理即可作出判斷.【詳解】由面面平行的判定定理知:內兩條相交直線都與平行是的充分條件,由面面平行性質定理知,若,則內任意一條直線都與平行,所以內兩條相交直線都與平行是的必要條件,故選B.【點睛】面面平行的判定問題要緊扣面面平行判定定理,最容易犯的錯誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯誤.6、B【解析】
首先根據函數的圖象分別向左與向右平移m,n個單位長度后,所得的兩個圖像重合,那么,利用的最小正周期為,從而求得結果.【詳解】的最小正周期為,那么(∈),于是,于是當時,最小值為,故選B.【點睛】該題考查的是有關三角函數的周期與函數圖象平移之間的關系,屬于簡單題目.7、B【解析】
根據函數的奇偶性及題設中關于與關系,轉換成關于的關系式,通過變形求解出的周期,進而算出.【詳解】為上的奇函數,,而函數是上的偶函數,,,故為周期函數,且周期為故選:B【點睛】本題主要考查了函數的奇偶性,函數的周期性的應用,屬于基礎題.8、B【解析】
由線面關系可知,不能確定與平面的關系,若一定可得,即可求出答案.【詳解】,不能確定還是,,當時,存在,,由又可得,所以“”是“”的必要不充分條件,故選:B【點睛】本題主要考查了必要不充分條件,線面垂直,線線垂直的判定,屬于中檔題.9、A【解析】
根據函數解析式,可知的定義域為,通過定義法判斷函數的奇偶性,得出,則為偶函數,可排除選項,觀察選項的圖象,可知代入,解得,排除選項,即可得出答案.【詳解】解:因為,所以的定義域為,則,∴為偶函數,圖象關于軸對稱,排除選項,且當時,,排除選項,所以正確.故選:A.【點睛】本題考查由函數解析式識別函數圖象,利用函數的奇偶性和特殊值法進行排除.10、C【解析】
設,求,作為的函數,其最小值是6,利用導數知識求的最小值.【詳解】設,則,記,,易知是增函數,且的值域是,∴的唯一解,且時,,時,,即,由題意,而,,∴,解得,.∴.故選:C.【點睛】本題考查導數的應用,考查用導數求最值.解題時對和的關系的處理是解題關鍵.11、B【解析】
由拋物線的定義轉化,列出方程求出p,即可得到拋物線方程.【詳解】由拋物線y2=2px(p>0)上的點M到其焦點F的距離比點M到y(tǒng)軸的距離大,根據拋物線的定義可得,,所以拋物線的標準方程為:y2=2x.故選B.【點睛】本題考查了拋物線的簡單性質的應用,拋物線方程的求法,屬于基礎題.12、B【解析】
由共軛復數的定義得到,通過三角函數值的正負,以及復數的幾何意義即得解【詳解】由題意得,因為,,所以在復平面內對應的點位于第二象限.故選:B【點睛】本題考查了共軛復數的概念及復數的幾何意義,考查了學生概念理解,數形結合,數學運算的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設,可得的取值范圍,分別利用基本不等式和,把用代換,結合的取值范圍求關于的二次函數的最值即可求解.【詳解】因為,,令,則,因為,當且僅當時等號成立,所以,,即,令則函數的對稱軸為,所以當時函數有最大值為,即.當且,即,或,時取等號;因為,當且僅當時等號成立,所以,令,則函數的對稱軸為,所以當時,函數有最小值為,即,當,且時取等號,所以.故答案為:【點睛】本題考查基本不等式與二次函數求最值相結合求代數式的取值范圍;考查運算求解能力和知識的綜合運用能力;基本不等式:和的靈活運用是求解本題的關鍵;屬于綜合型、難度大型試題.14、【解析】
由題,得滿足題目要求的情況有,①有一個數字4,另外兩個數字從1,2,3里面選和②有兩個數字4,另外一個數字從1,2,3里面選,由此即可得到本題答案.【詳解】滿足題目要求的情況可以分成2大類:①有一個數字4,另外兩個數字從1,2,3里面選,一共有種情況;②有兩個數字4,另外一個數字從1,2,3里面選,一共有種情況,又從中任意摸取3個小球,有種情況,所以取出的3個小球中數字最大的為4的概率.故答案為:【點睛】本題主要考查古典概型與組合的綜合問題,考查學生分析問題和解決問題的能力.15、【解析】
根據分段函數的性質,即可求出的取值范圍.【詳解】當時,,,當時,,所以,故的取值范圍是.故答案為:.【點睛】本題考查分段函數的性質,已知分段函數解析式求參數范圍,還涉及對數和指數的運算,屬于基礎題.16、240【解析】
利用二項式展開式的通項公式,令x的指數等于3,計算展開式中含有項的系數即可.【詳解】由題意得:,只需,可得,代回原式可得,故答案:240.【點睛】本題主要考查二項式展開式的通項公式及簡單應用,相對不難.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)不是,見解析(2)(3)【解析】
(1)利用遞推關系求出數列的通項公式,進一步驗證時,是否為數列中的項,即可得答案;(2)由題意得,再對公差進行分類討論,即可得答案;(3)由題意得數列為等差數列,設數列的公差為,再根據不等式得到公差的值,即可得答案;【詳解】(1)當時,又,所以.所以當時,,而,所以時,不是數列中的項,故數列不是為“數列”(2)因為數列是公差為的等差數列,所以.因為數列為“數列”所以任意,存在,使得,即有.①若,則只需,使得,從而得是數列中的項.②若,則.此時,當時,不為正整數,所以不符合題意.綜上,.(3)由題意,所以,又因為,且數列為“數列”,所以,即,所以數列為等差數列.設數列的公差為,則有,由,得,整理得,①.②若,取正整數,則當時,,與①式對應任意恒成立相矛盾,因此.同樣根據②式可得,所以.又,所以.經檢驗當時,①②兩式對應任意恒成立,所以數列的通項公式為.【點睛】本題考查數列新定義題、等差數列的通項公式,考查函數與方程思想、轉化與化歸思想、分類討論思想,考查邏輯推理能力、運算求解能力,難度較大.18、(1),(2)0【解析】
(1)分別把兩曲線參數方程中的參數消去,即可得到普通方程;(2)把直線的參數方程代入的普通方程,化為關于的一元二次方程,再由根與系數的關系及此時的幾何意義求解.【詳解】(1)由曲線的參數方程為為參數),消去參數,可得;由曲線的參數方程為為參數),消去參數,可得,即.(2)把為參數)代入,得.,..解得:,即,滿足△..【點睛】本題考查參數方程化普通方程,特別是直線參數方程中參數的幾何意義的應用,是中檔題.19、(1)見解析;(1)見證明【解析】
(1)求出函數的導數,解關于導函數的不等式,求出函數的單調區(qū)間,從而求出函數的極值即可;(1)問題轉化為證ex﹣x1﹣xlnx﹣1>0,根據xlnx≤x(x﹣1),問題轉化為只需證明當x>0時,ex﹣1x1+x﹣1>0恒成立,令k(x)=ex﹣1x1+x﹣1,(x≥0),根據函數的單調性證明即可.【詳解】(1),,當,,當,,在上遞增,在上遞減,在取得極大值,極大值為,無極大值.(1)要證f(x)+1<ex﹣x1.即證ex﹣x1﹣xlnx﹣1>0,先證明lnx≤x﹣1,取h(x)=lnx﹣x+1,則h′(x)=,易知h(x)在(0,1)遞增,在(1,+∞)遞減,故h(x)≤h(1)=0,即lnx≤x﹣1,當且僅當x=1時取“=”,故xlnx≤x(x﹣1),ex﹣x1﹣xlnx≥ex﹣1x1+x﹣1,故只需證明當x>0時,ex﹣1x1+x﹣1>0恒成立,令k(x)=ex﹣1x1+x﹣1,(x≥0),則k′(x)=ex﹣4x+1,令F(x)=k′(x),則F′(x)=ex﹣4,令F′(x)=0,解得:x=1ln1,∵F′(x)遞增,故x∈(0,1ln1]時,F′(x)≤0,F(x)遞減,即k′(x)遞減,x∈(1ln1,+∞)時,F′(x)>0,F(x)遞增,即k′(x)遞增,且k′(1ln1)=5﹣8ln1<0,k′(0)=1>0,k′(1)=e1﹣8+1>0,由零點存在定理,可知?x1∈(0,1ln1),?x1∈(1ln1,1),使得k′(x1)=k′(x1)=0,故0<x<x1或x>x1時,k′(x)>0,k(x)遞增,當x1<x<x1時,k′(x)<0,k(x)遞減,故k(x)的最小值是k(0)=0或k(x1),由k′(x1)=0,得=4x1﹣1,k(x1)=﹣1+x1﹣1=﹣(x1﹣1)(1x1﹣1),∵x1∈(1ln1,1),∴k(x1)>0,故x>0時,k(x)>0,原不等式成立.【點睛】本題考查了函數的單調性,極值問題,考查導數的應用以及不等式的證明,考查轉化思想,屬于中檔題.20、(1)(2)【解析】
(1)設,根據直線的斜率公式即可求解;(2)設直線的方程為,聯立直線與拋物線方程,由韋達定理得,,結合直線的斜率公式得到,換元后討論的符號,求最值可求解.【詳解】(1)設,因為,即直線的斜率為1.(2)顯然直線的斜率存在,設直線的方程為.聯立方程組,可得則,令,則則當時,;當且僅當,即時,解得時,取“=”號,當時,;當時,綜上所述,當時,取得最大值,此時直線的方程是.【點睛】本題主要考查了直線的斜率公式,直線與拋物線的位置關系,換元法,均值不等式,考查了運算能力,屬于難題.21、;①;②.【解析】
根據題意列出方程組求解即可;①由原點為的垂心可得,軸,設,則,,根據求出線段的長;②設中點為,直線與橢圓交于,兩點,為的重心,則,設:,,,則,當斜率不存在時,則到直線的距離為1,,由,則,,,得出,根據求解即可.【詳解】解:設焦距為,由題意知:,因此,橢圓的方程為:;①由題意知:,故軸,設,則,,,解得:或,,不重合,故,,故;②設中點為,直線與橢圓交于,兩點,為的重心,則,當斜率不存在時,則到直線的距離為1;設:,,,則,,則,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 渣土購買及環(huán)保處理服務2025年度合同3篇
- 二零二五年度荒料銷售與風險管理合同3篇
- 二零二五版房地產租賃合同增加補充協(xié)議范本3篇
- 二零二五年度餐飲公司環(huán)保設施投資合作合同范本3篇
- 二零二五版本二手房買賣合同含房屋相鄰權及公共設施使用協(xié)議2篇
- 二零二五版中小學教師派遣及教學資源整合合同3篇
- 二零二五年度文化產業(yè)園區(qū)場地使用權買賣合同范例3篇
- 基于2025年度的環(huán)保服務合同2篇
- 二零二五版企業(yè)股權激勵方案評估與優(yōu)化合同3篇
- 個人出版作品稿酬合同(2024版)3篇
- 油田酸化工藝技術
- 食堂經營方案(技術標)
- 代收實收資本三方協(xié)議范本
- 人教版八年級英語下冊全冊課件【完整版】
- 乒乓球比賽表格
- 商務接待表格
- 腸梗阻導管治療
- word小報模板:優(yōu)美企業(yè)報刊報紙排版設計
- 漢語教學 《成功之路+進步篇+2》第17課課件
- 三十頌之格助詞【精品課件】-A3演示文稿設計與制作【微能力認證優(yōu)秀作業(yè)】
- 浙江省紹興市2023年中考科學試題(word版-含答案)
評論
0/150
提交評論