版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
中英文對(duì)照外文翻譯(文檔含英文原文和中文翻譯)原文:SafetyAssuranceforChallengingGeotechnicalCivil
EngineeringConstructionsinUrbanAreasAbstractSafetyisthemostimportantaspectduringdesign,constructionandservicetimeofanystructure,especiallyforchallengingprojectslikehigh-risebuildingsandtunnelsinurbanareas.Ahighleveldesignconsideringthesoil-structureinteraction,basedonaqualifiedsoilinvestigationisrequiredforasafeandoptimiseddesign.Duetothecomplexityofgeotechnicalconstructionsthesafetyassuranceguaranteedbythe4-eye-principleisessential.The4-eye-principleconsistsofanindependentpeerreviewbypubliclycertifiedexpertscombinedwiththeobservationalmethod.Thepaperpresentsthefundamentalaspectsofsafetyassurancebythe4-eye-principle.Theapplicationisexplainedonseveralexamples,asdeepexcavations,complexfoundationsystemsforhigh-risebuildingsandtunnelconstructionsinurbanareas.Theexperiencesmadeintheplanning,designandconstructionphasesareexplainedandfornewinnerurbanprojectsrecommendationsaregiven.Keywords:NaturalAsset;FinancialValue;NeuralNetworkIntroductionAsafetydesignandconstructionofchallengingprojectsinurbanareasisbasedonthefollowingmainaspects:Qualifiedexpertsforplanning,designandconstruction;Interactionbetweenarchitects,structuralengineersandgeotechnicalengineers;Adequatesoilinvestigation;DesignofdeepfoundationsystemsusingtheFiniteElement-Method(FEM)incombinationwithenhancedin-situloadtestsforcalibratingthesoilparametersusedinthenumericalsimulations;Qualityassurancebyanindependentpeerreviewprocessandtheobservationalmethod(4-eye-principle).Thesefactswillbeexplainedbylargeconstructionprojectswhicharelocatedindifficultsoilandgroundwaterconditions.The4-Eye-PrincipleThebasisforsafetyassuranceisthe4-eye-principle.This4-eye-principleisaprocessofanindependentpeerreviewasshowninFigure1.Itconsistsof3parts.Theinvestor,theexpertsforplanninganddesignandtheconstructioncompanybelongtothefirstdivision.Planninganddesignaredoneaccordingtotherequirementsoftheinvestorandallrelevantdocumentstoobtainthebuildingpermissionareprepared.Thebuildingauthoritiesarethesecondpartandareresponsibleforthebuildingpermissionwhichisgiventotheinvestor.Thethirddivisionconsistsofthepubliclycertifiedexperts.Theyareappointedbythebuildingauthoritiesbutworkasindependentexperts.Theyareresponsibleforthetechnicalsupervisionoftheplanning,designandtheconstruction.Inordertoachievethelicenseasapubliclycertifiedexpertforgeotechnicalengineeringbythebuildingauthoritiesintensivestudiesofgeotechnicalengineeringinuniversityandlargeexperiencesingeotechnicalengineeringwithspecialknowledgeaboutthesoil-structureinteractionhavetobeproven.Theindependentpeerreviewbypubliclycertifiedexpertsforgeotechnicalengineeringmakessurethatallinformationincludingtheresultsofthesoilinvestigationconsistingoflaborfieldtestsandtheboundaryconditionsdefinedforthegeotechnicaldesignarecompleteandcorrect.Inthecaseofadefectorcollapsethepubliclycertifiedexpertforgeotechnicalengineeringcanbeinvolvedasanindependentexperttofindoutthereasonsforthedefectordamageandtodevelopaconceptforstabilizationandreconstruction[1].Foralldifficultprojectsanindependentpeerreviewisessentialforthesuccessfulrealizationoftheproject.ObservationalMethodTheobservationalmethodispracticaltoprojectswithdifficultboundaryconditionsforverificationofthedesignduringtheconstructiontimeand,ifnecessary,duringservicetime.ForexampleintheEuropeanStandardEurocode7(EC7)theeffectandtheboundaryconditionsoftheobservationalmethodaredefined.Theapplicationoftheobservationalmethodisrecommendedforthefollowingtypesofconstructionprojects[2]:verycomplicated/complexprojects;projectswithadistinctivesoil-structure-interaction,e.g.mixedshallowanddeepfoundations,retainingwallsfordeepexcavations,CombinedPile-RaftFoundations(CPRFs);projectswithahighandvariablewaterpressure;complexinteractionsituationsconsistingofground,excavationandneighbouringbuildingsandstructures;projectswithpore-waterpressuresreducingthestability;projectsonslopes.Theobservationalmethodisalwaysacombinationofthecommongeotechnicalinvestigationsbeforeandduringtheconstructionphasetogetherwiththetheoreticalmodelingandaplanofcontingencyactions(Figure2).Onlymonitoringtoensurethestabilityandtheserviceabilityofthestructureisnotsufficientand,accordingtothestandardization,notpermittedforthispurpose.Overalltheobservationalmethodisaninstitutionalizedcontrollinginstrumenttoverifythesoilandrockmechanicalmodeling[3,4].Theidentificationofallpotentialfailuremechanismsisessentialfordefiningthemeasureconcept.Theconcepthastobedesignedinthatwaythatallthesemechanismscanbeobserved.Themeasurementsneedtobeofanadequateaccuracytoallowtheidentificationocriticaltendencies.Therequiredaccuracyaswellasthe
boundaryvaluesneedtobeidentifiedwithinthedesignphaseoftheobservationalmethod.Contingencyactionsneedstobeplannedinthedesignphaseoftheobservationalmethodanddependontheductilityofthesystems.Theobservationalmethodmustnotbeseenasapotentialalternativeforacomprehensivesoilinvestigationcampaign.Acomprehensivesoilinvestigationcampaignisinanywayofessentialimportance.Additionallytheobservationalmethodisatoolofqualityassuranceandallowstheverificationoftheparametersandcalculationsappliedinthedesignphase.Theobservationalmethodhelpstoachieveaneconomicandsaveconstruction[5].In-SituLoadTestOnprojectandsiterelatedsoilinvestigationswithcoredrillingsandlaboratoryteststhesoilparametersaredetermined.Laboratorytestsareimportantandessentialfortheinitialdefinitionofsoilmechanicalpropertiesofthesoillayer,butusuallynotsufficientforanentireandrealisticcaptureofthecomplexconditions,causedbytheinteractionofsubsoilandconstruction[6].Inordertoreliablydeterminetheultimatebearingcapacityofpiles,loadtestsneedtobecarriedout[7].Forpileloadtestsoftenveryhighcounterweightsorstrong
anchorsystemsarenecessary.ByusingtheOsterbergmethodhighloadscanbereachedwithoutinstallinganchorsorcounterweights.Hydraulicjacksinducethe
loadinthepileusingthepileitselfpartlyasabutment.Theresultsofthefieldtestsallowacalibrationofthenumericalsimulations.TheprincipleschemeofpileloadtestsisshowninFigure3.ExamplesforEngineeringPractice5.1.ClassicPileFoundationforaHigh-RiseBuildinginFrankfurtClayandLimestoneInthedowntownofFrankfurtamMain,Germany,onaconstructionsiteof17,400m2thehigh-risebuildingproject“PalaisQuartier”hasbeenrealized(Figure4).
Theconstructionwasfinishedin2010.Thecomplexconsistsofseveralstructureswithatotalof180,000m2floorspace,thereof60,000m2underground(Figure5).Theprojectincludesthehistoricbuilding“Thurn-undTaxis-Palais”whosefacadehasbeenpreserved(UnitA).Theofficebuilding(UnitB),whichisthehighestbuildingoftheprojectwitha
heightof136mhas34floorseachwithafloorspaceof1340m2.Thehotelbuilding(UnitC)hasaheightof99mwith24upperfloors.Theretailarea(UnitD)runsalongthetotallengthoftheeasternpartofthesiteandconsistsofeightupperfloorswithatotalheightof43m.Theundergroundparkinggaragewithfivefloorsspansacrossthecompleteprojectarea.Withan8mhighfirstsublevel,partiallywithmezzaninefloor,andfourmoresub-levelsthefoundationdepthresultsto22mbelowgroundlevel.Therebyexcavationbottomisat80mabovesealevel(msl).Atotalof302foundationpiles(diameterupto1.86m,lengthupto27m)reachdowntodepthsof53.2mto70.1m.abovesealeveldependingonthestructuralrequirements.Thepileheadofthe543retainingwallpiles(diameter1.5m,lengthupto38m)werelocatedbetween94.1mand99.6mabovesealevel,thepilebasewasbetween59.8mand73.4mabovesealeveldependingonthestructuralrequirements.Asshowninthesectionalview(Figure6),theupperpartofthepilesisintheFrankfurt
ClayandthebaseofthepilesissetintherockyFrankfurtLimestone.Regardingthelargenumberofpilesandthehighpile
loadsapileloadtesthasbeencarriedoutforoptimizationoftheclassicpilefoundation.Osterberg-Cells(O-Cells)havebeeninstalledintwolevelsinorderto
assesstheinfluenceofpileshaftgroutingonthelimitskinfrictionofthepilesintheFrankfurtLimestone(Figure6).Thetestpilewithatotallengthof12.9mand
adiameterof1.68mconsistofthreesegmentsandhasbeeninstalledintheFrankfurtLimestonelayer31.7mbelowgroundlevel.Theupperpilesegmentabovethe
uppercelllevelandthemiddlepilesegmentbetweenthetwocelllevelscanbetestedindependently.Inthefirstphaseofthetesttheupperpartwasloadedbyusingthe
middleandthelowerpartasabutment.Alimitof24MNcouldbereached(Figure7).Theuppersegmentwasliftedabout1.5cm,thesettlementofthemiddleand
lowerpartwas1.0cm.Themobilizedshaftfrictionwasabout830kN/m2.Subsequentlytheupperpilesegmentwasuncoupledbydischargingtheuppercelllevel.Inthesecondtestphasethemiddlepilesegmentwasloadedbyusingthe
lowersegmentasabutment.Thelimitloadofthemiddlesegmentwithshaftgroutingwas27.5MN(Figure7).Theskinfrictionwas1040kN/m2,thismeans24%higherthanwithoutshaftgrouting.BasedontheresultsofthepileloadtestusingO-Cellsthemajorityofthe290foundationpilesweremadebyapplyingshaftgrouting.Due
topileloadtestthetotallengthofwasreducedsignificantly.5.2.CPRFforaHigh-RiseBuildinginClayMarlInthescopeoftheprojectMiraxPlazainKiev,Ukraine,2high-risebuildings,eachofthem192m(46storeys)high,ashoppingandentertainmentmallandanundergroundparkingareunderconstruction(Figure8).Theareaoftheprojectisabout294,000m2andcutsa30mhighnaturalslope.Thegeotechnicalinvestigationshavebeenexecuted70mdeep.Thesoilconditionsattheconstructionsiteareasfollows:filltoadepthof2mto3mquaternarysiltysandandsandysiltwithathicknessof5mto10mtertiarysiltandsand(CharkowandPoltawformation)withathicknessof0mto24mtertiaryclayeysiltandclaymarloftheKievandButschakformationwithathicknessofabout20mtertiaryfinesandoftheButschakformationuptotheinvestigationdepthThegroundwaterlevelisinadepthofabout2mbelowthegroundsurface.ThesoilconditionsandacrosssectionoftheprojectareshowninFigure9.Forverificationoftheshaftandbaseresistanceofthedeepfoundationelementsandforcalibrationofthenumericalsimulationspileloadtestshavebeencarriedoutontheconstructionyard.Thepileshadadiameterof0.82mandalengthofabout10mto44m.UsingtheresultsoftheloadteststhebackanalysisforverificationoftheFEMsimulationswasdone.Thesoilpropertiesinaccordancewiththeresultsofthebackanalysiswerepartly3timeshigherthanindicatedinthegeotechnicalreport.Figure10showstheresultsoftheloadtestNo.2andthenumericalbackanalysis.Measurementandcalculationshowagoodaccordance.Theobtainedresultsofthepileloadtestsandoftheexecutedbackanalysiswereappliedin3-dimensionalFEM-simulationsofthefoundationforTowerA,takingadvantageofthesymmetryofthefootprintofthebuilding.TheoverallloadoftheTowerAisabout2200MNandtheareaofthefoundationabout2000m2(Figure
11).ThefoundationdesignconsidersaCPRFwith64barretteswith33mlengthandacrosssectionof2.8m×0.8m.Theraftof3mthicknessislocatedinKievClayMarlatabout10mdepthbelowthegroundsurface.ThebarrettesarepenetratingthelayerofKievClayMarlreachingtheButschakSands.Thecalculatedloadsonthebarretteswereintherangeof22.1MNto44.5MN.Theloadontheouterbarretteswasabout41.2MNto44.5MNwhichsignificantlyexceedstheloadsontheinnerbarretteswiththemaximumvalueof30.7MN.ThisbehavioristypicalforaCPRF.Theouterdeepfoundationelementstakemoreloadsbecauseoftheirhigherstiffnessduetothehighervolumeoftheactivatedsoil.TheCPRFcoefficientis.Maximumsettlementsofabout12cmwerecalculatedduetothesettlement-relevantloadof85%ofthetotaldesignload.Thepressureunderthefoundationraftiscalculatedinthemostareasnotexceeding200
kN/m2,attheraftedgethepressurereaches400kN/m2.Thecalculatedbasepressureoftheouterbarretteshasanaverageof5100kN/m2andforinnerbarrettesanaverageof4130kN/m2.Themobilizedshaftresistanceincreaseswiththedepthreaching180kN/m2forouterbarrettesand150kN/m2forinnerbarrettes.DuringtheconstructionofMiraxPlazatheobservationalmethodaccordingtoEC7isapplied.Especiallythedistributionoftheloadsbetweenthebarrettesandthe
raftismonitored.Forthisreason3earthpressuredeviceswereinstalledundertheraftand2barrettes(mostloadedouterbarretteandaverageloadedinnerbarrette)were
instrumentedoverthelength.InthescopeoftheprojectMiraxPlazathenewallowableshaftresistanceandbaseresistanceweredefinedfortypicalsoillayersinKiev.ThisuniqueexperiencewillbeusedfortheskyscrapersofnewgenerationinUkraine.TheCPRFofthehigh-risebuildingprojectMiraxPlazarepresentsthefirstauthorizedCPRFintheUkraine.UsingtheadvancedoptimizationapproachesandtakingadvantageofthepositiveeffectofCPRFthenumberofbarrettescouldbereducedfrom120barretteswith40mlengthto64barretteswith33mlength.Thefoundationoptimizationleadstoconsiderabledecreaseoftheutilizedresources(cement,aggregates,water,energyetc.)andcostsavingsofabout3.3MillionUS$.譯文:安全保證巖土公民發(fā)起挑戰(zhàn)工程建設(shè)在城市地區(qū)摘要安全是最重要的方面在設(shè)計(jì)、施工和服務(wù)時(shí)間的任何結(jié)構(gòu),特別是對(duì)具有挑戰(zhàn)性的項(xiàng)目,如高層建筑和隧道在城市地區(qū)。高水平的設(shè)計(jì)考慮到土壤結(jié)構(gòu)相互作用,基于一個(gè)合格的土壤調(diào)查需要一個(gè)安全的和優(yōu)化設(shè)計(jì)。由于巖土結(jié)構(gòu)的復(fù)雜性4眼原則擔(dān)保的安全保障是至關(guān)重要的。4眼原則由一個(gè)獨(dú)立的同行審查通過(guò)公開(kāi)認(rèn)證專家結(jié)合觀察法。這篇論文介紹了由4眼原則安全保證的基本方面。應(yīng)用程序解釋幾個(gè)例子,深度挖掘,復(fù)雜的高層建筑基礎(chǔ)系統(tǒng)和隧道結(jié)構(gòu)在城市地區(qū)。經(jīng)驗(yàn)的規(guī)劃、設(shè)計(jì)和施工階段進(jìn)行解釋和新城市內(nèi)部項(xiàng)目的建議。關(guān)鍵詞:自然資產(chǎn),金融價(jià)值;神經(jīng)網(wǎng)絡(luò)1.介紹一個(gè)安全的設(shè)計(jì)和施工具有挑戰(zhàn)性的項(xiàng)目在城市地區(qū)是基于以下主要方面:合格的專家對(duì)規(guī)劃、設(shè)計(jì)和施工;互動(dòng)建筑師、結(jié)構(gòu)工程師和巖土工程師;充足的土壤調(diào)查;深基礎(chǔ)系統(tǒng)的設(shè)計(jì)使用的組合使用有限元法(FEM)結(jié)合增強(qiáng)原位校準(zhǔn)土壤參數(shù)的負(fù)載測(cè)試中使用的數(shù)值模擬;質(zhì)量保證由一個(gè)獨(dú)立的同行審查過(guò)程和觀察法(4眼原則)。這些事實(shí)將被解釋為大型建筑項(xiàng)目位于艱難的土壤和地下水環(huán)境。2四眼原則安全保證是4眼原則的基礎(chǔ)。這4眼原則是一個(gè)獨(dú)立的同行審查的過(guò)程如圖1所示。它由3部分組成。投資者、專家規(guī)劃設(shè)計(jì)和建筑公司屬于第一次分裂。規(guī)劃和設(shè)計(jì)都是根據(jù)投資者的要求和所有相關(guān)文件準(zhǔn)備獲得建筑許可。建筑部門,負(fù)責(zé)第二部分的建筑許可給投資者。第三部分包括公開(kāi)認(rèn)證專家。他們由建設(shè)部門任命,但獨(dú)立專家。他們負(fù)責(zé)技術(shù)監(jiān)督的規(guī)劃、設(shè)計(jì)和建設(shè)。為了實(shí)現(xiàn)許可作為巖土工程的公開(kāi)認(rèn)證專家構(gòu)建當(dāng)局強(qiáng)化的研究在大學(xué)巖土工程和大型巖土工程的經(jīng)驗(yàn)和專門知識(shí)的土壤結(jié)構(gòu)交互必須證明。獨(dú)立的同行審查由公開(kāi)認(rèn)證專家為巖土工程確保所有信息包括土壤調(diào)查的結(jié)果組成的勞動(dòng)現(xiàn)場(chǎng)測(cè)試和巖土設(shè)計(jì)的邊界條件定義是完整和正確的。在缺陷或崩潰的情況下公開(kāi)認(rèn)證專家可以涉及巖土工程作為一個(gè)獨(dú)立的專家來(lái)找出缺陷或損壞的原因,為穩(wěn)定和開(kāi)發(fā)一個(gè)概念重建[1]。所有困難的項(xiàng)目一個(gè)獨(dú)立的同行審查項(xiàng)目的成功實(shí)現(xiàn)是至關(guān)重要的。3。觀察法觀察法是實(shí)際項(xiàng)目與困難的邊界條件的驗(yàn)證設(shè)計(jì)在施工期間,如果有必要,在服務(wù)時(shí)間。例如在歐洲標(biāo)準(zhǔn)歐洲規(guī)范7(EC7)和邊界條件的影響的觀測(cè)方法定義。觀察法的應(yīng)用建議以下類型的建設(shè)項(xiàng)目[2]:非常復(fù)雜的/復(fù)雜的項(xiàng)目;獨(dú)特的土結(jié)構(gòu)相互作用的項(xiàng)目,例如混合淺和深基礎(chǔ)、擋土墻的深度發(fā)掘,結(jié)合樁筏基礎(chǔ)(CPRFs);和變量水壓高的項(xiàng)目;組成的復(fù)雜的相互作用情況下,挖掘和鄰近建筑物和結(jié)構(gòu);項(xiàng)目與孔隙水壓力減少穩(wěn)定;項(xiàng)目在山坡上。觀察法總是結(jié)合常見(jiàn)的巖土調(diào)查之前和在構(gòu)建階段的理論建模和應(yīng)急行動(dòng)計(jì)劃(圖2),只有監(jiān)控以確保結(jié)構(gòu)的穩(wěn)定和服務(wù)能力是不夠的,根據(jù)標(biāo)準(zhǔn)化,不允許。整體觀察法是一個(gè)制度化的控制儀器驗(yàn)證土壤和巖石力學(xué)建模(3、4)。識(shí)別所有潛在的失敗機(jī)制基本定義度量的概念。概念設(shè)計(jì)那樣,所有這些機(jī)制都可以觀察到。測(cè)量需要幫上一個(gè)適當(dāng)?shù)木仍试S識(shí)別方向傾向。所需的準(zhǔn)確性以及邊界值需要在設(shè)計(jì)階段確定的觀測(cè)方法。應(yīng)急行動(dòng)計(jì)劃需要在設(shè)計(jì)階段的觀測(cè)方法,取決于系統(tǒng)的延展性。觀察法不得被視為一個(gè)潛在的選擇一個(gè)全面的土壤調(diào)查活動(dòng)。綜合土壤調(diào)查活動(dòng)以任何方式基本的重要性。此外觀察法是質(zhì)量保證的工具,允許參數(shù)的驗(yàn)證和計(jì)算應(yīng)用在設(shè)計(jì)階段。觀測(cè)方法有助于實(shí)現(xiàn)經(jīng)濟(jì)和節(jié)約建設(shè)[5]。4。原位載荷試驗(yàn)在項(xiàng)目和網(wǎng)站相關(guān)的土壤調(diào)查與核心運(yùn)轉(zhuǎn)和實(shí)驗(yàn)室檢測(cè)參數(shù)確定。實(shí)驗(yàn)室檢測(cè)是重要的和必不可少的初始定義的土壤土層的力學(xué)性能,但通常不能滿足整個(gè)和現(xiàn)實(shí)的捕捉復(fù)雜的條件下,由于底土和建筑的相互作用[6]。為了可靠地確定樁的極限承載力,負(fù)載測(cè)試需要進(jìn)行[7]。Forpile負(fù)載測(cè)試往往非常高的柜臺(tái)重量或強(qiáng)錨定系統(tǒng)是必要的。用奧斯特伯格方法高負(fù)載可以達(dá)到?jīng)]有安裝錨或計(jì)數(shù)器的重量。液壓千斤頂誘導(dǎo)負(fù)載在橋臺(tái)樁使用樁本身部分?,F(xiàn)場(chǎng)測(cè)試的結(jié)果允許校正的數(shù)值模擬。負(fù)載測(cè)試樁的原理圖如圖3所示。5.工程實(shí)踐的示例5.1.經(jīng)典的高層建筑樁基礎(chǔ)在法蘭克福粘土和石灰?guī)r德國(guó)法蘭克福市中心的建筑位置的17400平方米的高層建筑項(xiàng)目“PalaisQuartier”已經(jīng)意識(shí)到(圖4)。建設(shè)于2010年完成。復(fù)雜的由幾種結(jié)構(gòu)共有180000平方米建筑面積,有60000平方米的地下(圖5)。項(xiàng)目包括歷史建筑”Thurn-undTaxis-Palais”的外觀已經(jīng)保存(單元)。辦公大樓(單位B),這是最高的建筑項(xiàng)目高度136米34層每層建筑面積1340平方米。酒店建筑(單位C)與24樓上有99米的高度。零售區(qū)域的總長(zhǎng)度(單位D)沿著東部的網(wǎng)站,由八樓上共43米的高度。五層的地
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025正規(guī)土地轉(zhuǎn)讓合同格式
- 員工與法人合同范例
- 中藥飲合同范例
- 水果產(chǎn)地采購(gòu)合同范例
- 銅仁幼兒師范高等專科學(xué)?!豆I(yè)機(jī)器人控制技術(shù)課程設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 銅陵學(xué)院《計(jì)里經(jīng)濟(jì)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 銅陵學(xué)院《報(bào)道攝影與圖片編輯(實(shí)訓(xùn))》2023-2024學(xué)年第一學(xué)期期末試卷
- 桐城師范高等??茖W(xué)?!锻聊竟こ探ㄔ炫c前沿技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 同濟(jì)大學(xué)浙江學(xué)院《分析化學(xué)A》2023-2024學(xué)年第一學(xué)期期末試卷
- 同濟(jì)大學(xué)《社會(huì)調(diào)查與分析訓(xùn)練》2023-2024學(xué)年第一學(xué)期期末試卷
- T∕CAAA 005-2018 青貯飼料 全株玉米
- s鐵路預(yù)應(yīng)力混凝土連續(xù)梁(鋼構(gòu))懸臂澆筑施工技術(shù)指南
- 撥叉831006設(shè)計(jì)說(shuō)明書
- 程序語(yǔ)言課程設(shè)計(jì)任意兩個(gè)高次多項(xiàng)式的加法和乘法運(yùn)算
- WLANAP日常操作維護(hù)規(guī)范
- GE公司燃?xì)廨啓C(jī)組支持軸承結(jié)構(gòu)及性能分析
- 石油鉆井八大系統(tǒng)ppt課件
- 北師大版二年級(jí)數(shù)學(xué)上冊(cè)期末考試復(fù)習(xí)計(jì)劃
- 人教PEP版六年級(jí)英語(yǔ)上冊(cè)《Unit4_B_Let’s_learn教學(xué)設(shè)計(jì)》
- 農(nóng)村供水工程設(shè)計(jì)技術(shù)要點(diǎn)
- 收貨回執(zhí)單1頁(yè)
評(píng)論
0/150
提交評(píng)論