版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
廣東梅州興寧四礦中學(xué)2024學(xué)年中考數(shù)學(xué)押題卷考生請(qǐng)注意:1.答題前請(qǐng)將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.計(jì)算(-18)÷9的值是()A.-9 B.-27 C.-2 D.22.如圖,在△ABC中,AB=AC=5,BC=8,D是線段BC上的動(dòng)點(diǎn)(不含端點(diǎn)B,C).若線段AD長為正整數(shù),則點(diǎn)D的個(gè)數(shù)共有()A.5個(gè) B.4個(gè) C.3個(gè) D.2個(gè)3.小明將某圓錐形的冰淇淋紙?zhí)籽厮囊粭l母線展開若不考慮接縫,它是一個(gè)半徑為12cm,圓心角為的扇形,則A.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmB.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmC.圓錐形冰淇淋紙?zhí)椎母邽镈.圓錐形冰淇淋紙?zhí)椎母邽?.如圖,△ABC是⊙O的內(nèi)接三角形,AD⊥BC于D點(diǎn),且AC=5,CD=3,BD=4,則⊙O的直徑等于()A.52 B.32 C.55.如圖,AB是半圓的直徑,O為圓心,C是半圓上的點(diǎn),D是上的點(diǎn),若∠BOC=40°,則∠D的度數(shù)為()A.100° B.110° C.120° D.130°6.如圖,在正方形ABCD中,AB=,P為對(duì)角線AC上的動(dòng)點(diǎn),PQ⊥AC交折線A﹣D﹣C于點(diǎn)Q,設(shè)AP=x,△APQ的面積為y,則y與x的函數(shù)圖象正確的是()A. B.C. D.7.如圖1,點(diǎn)P從△ABC的頂點(diǎn)A出發(fā),沿A﹣B﹣C勻速運(yùn)動(dòng),到點(diǎn)C停止運(yùn)動(dòng).點(diǎn)P運(yùn)動(dòng)時(shí),線段AP的長度y與運(yùn)動(dòng)時(shí)間x的函數(shù)關(guān)系如圖2所示,其中D為曲線部分的最低點(diǎn),則△ABC的面積是()A.10 B.12 C.20 D.248.世界上最小的開花結(jié)果植物是澳大利亞的出水浮萍,這種植物的果實(shí)像一個(gè)微小的無花果,質(zhì)量只有0.0000000076克,將數(shù)0.0000000076用科學(xué)記數(shù)法表示為()A.7.6×10﹣9 B.7.6×10﹣8 C.7.6×109 D.7.6×1089.如圖,下列四個(gè)圖形是由已知的四個(gè)立體圖形展開得到的,則對(duì)應(yīng)的標(biāo)號(hào)是A. B. C. D.10.在一幅長,寬的矩形風(fēng)景畫的四周鑲一條金色紙邊,制成一幅矩形掛圖,如圖所示,如果要使整幅掛圖的面積是,設(shè)金色紙邊的寬為,那么滿足的方程是()A. B.C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.矩形ABCD中,AB=6,BC=8.點(diǎn)P在矩形ABCD的內(nèi)部,點(diǎn)E在邊BC上,滿足△PBE∽△DBC,若△APD是等腰三角形,則PE的長為數(shù)___________.12.已知點(diǎn)P(a,b)在反比例函數(shù)y=的圖象上,則ab=_____.13.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,點(diǎn)D是以點(diǎn)A為圓心4為半徑的圓上一點(diǎn),連接BD,點(diǎn)M為BD中點(diǎn),線段CM長度的最大值為_____.14.如圖是拋物線型拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m.水面下降2.5m,水面寬度增加_____m.15.一個(gè)多邊形的每個(gè)內(nèi)角都等于150°,則這個(gè)多邊形是_____邊形.16.如圖所示,D、E之間要挖建一條直線隧道,為計(jì)算隧道長度,工程人員在線段AD和AE上選擇了測量點(diǎn)B,C,已知測得AD=100,AE=200,AB=40,AC=20,BC=30,則通過計(jì)算可得DE長為_____.三、解答題(共8題,共72分)17.(8分)如圖,已知∠ABC=90°,AB=BC.直線l與以BC為直徑的圓O相切于點(diǎn)C.點(diǎn)F是圓O上異于B、C的動(dòng)點(diǎn),直線BF與l相交于點(diǎn)E,過點(diǎn)F作AF的垂線交直線BC于點(diǎn)D.如果BE=15,CE=9,求EF的長;證明:①△CDF∽△BAF;②CD=CE;探求動(dòng)點(diǎn)F在什么位置時(shí),相應(yīng)的點(diǎn)D位于線段BC的延長線上,且使BC=CD,請(qǐng)說明你的理由.18.(8分)(1)問題發(fā)現(xiàn):如圖①,在等邊三角形ABC中,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關(guān)系為;(2)深入探究:如圖②,在等腰三角形ABC中,BA=BC,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由;(3)拓展延伸:如圖③,在正方形ADBC中,AD=AC,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作正方形AMEF,點(diǎn)N為正方形AMEF的中點(diǎn),連接CN,若BC=10,CN=,試求EF的長.19.(8分)某小學(xué)為每個(gè)班級(jí)配備了一種可以加熱的飲水機(jī),該飲水機(jī)的工作程序是:放滿水后,接通電源,則自動(dòng)開始加熱,每分鐘水溫上升10℃,待加熱到100℃,飲水機(jī)自動(dòng)停止加熱,水溫開始下降,水溫y(℃)和通電時(shí)間x(min)成反比例關(guān)系,直至水溫降至室溫,飲水機(jī)再次自動(dòng)加熱,重復(fù)上述過程.設(shè)某天水溫和室溫為20℃,接通電源后,水溫和時(shí)間的關(guān)系如下圖所示,回答下列問題:(1)分別求出當(dāng)0≤x≤8和8<x≤a時(shí),y和x之間的關(guān)系式;(2)求出圖中a的值;(3)李老師這天早上7:30將飲水機(jī)電源打開,若他想再8:10上課前能喝到不超過40℃的開水,問他需要在什么時(shí)間段內(nèi)接水.20.(8分)每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買10臺(tái)節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號(hào)的設(shè)備可供選購,經(jīng)調(diào)查:購買了3臺(tái)甲型設(shè)備比購買2臺(tái)乙型設(shè)備多花了16萬元,購買2臺(tái)甲型設(shè)備比購買3臺(tái)乙型設(shè)備少花6萬元.求甲、乙兩種型號(hào)設(shè)備的價(jià)格;該公司經(jīng)預(yù)算決定購買節(jié)省能源的新設(shè)備的資金不超過110萬元,你認(rèn)為該公司有幾種購買方案;在(2)的條件下,已知甲型設(shè)備的產(chǎn)量為240噸/月,乙型設(shè)備的產(chǎn)量為180噸/月,若每月要求總產(chǎn)量不低于2040噸,為了節(jié)約資金,請(qǐng)你為該公司設(shè)計(jì)一種最省錢的購買方案.21.(8分)如圖,∠BAO=90°,AB=8,動(dòng)點(diǎn)P在射線AO上,以PA為半徑的半圓P交射線AO于另一點(diǎn)C,CD∥BP交半圓P于另一點(diǎn)D,BE∥AO交射線PD于點(diǎn)E,EF⊥AO于點(diǎn)F,連接BD,設(shè)AP=m.(1)求證:∠BDP=90°.(2)若m=4,求BE的長.(3)在點(diǎn)P的整個(gè)運(yùn)動(dòng)過程中.①當(dāng)AF=3CF時(shí),求出所有符合條件的m的值.②當(dāng)tan∠DBE=時(shí),直接寫出△CDP與△BDP面積比.22.(10分)某數(shù)學(xué)教師為了解所教班級(jí)學(xué)生完成數(shù)學(xué)課前預(yù)習(xí)的具體情況,對(duì)該班部分學(xué)生進(jìn)行了一學(xué)期的跟蹤調(diào)查,將調(diào)查結(jié)果分為四類并給出相應(yīng)分?jǐn)?shù),A:很好,95分;B:較好75分;C:一般,60分;D:較差,30分.并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:(Ⅰ)該教師調(diào)查的總?cè)藬?shù)為,圖②中的m值為;(Ⅱ)求樣本中分?jǐn)?shù)值的平均數(shù)、眾數(shù)和中位數(shù).23.(12分)如圖,在平行四邊形中,的平分線與邊相交于點(diǎn).(1)求證;(2)若點(diǎn)與點(diǎn)重合,請(qǐng)直接寫出四邊形是哪種特殊的平行四邊形.24.如圖,四邊形ABCD內(nèi)接于圓,對(duì)角線AC與BD相交于點(diǎn)E,F(xiàn)在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.求證:(1)CD⊥DF;(2)BC=2CD.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】
直接利用有理數(shù)的除法運(yùn)算法則計(jì)算得出答案.【題目詳解】解:(-18)÷9=-1.
故選:C.【題目點(diǎn)撥】此題主要考查了有理數(shù)的除法運(yùn)算,正確掌握運(yùn)算法則是解題關(guān)鍵.2、C【解題分析】試題分析:過A作AE⊥BC于E,∵AB=AC=5,BC=8,∴BE=EC=4,∴AE=3,∵D是線段BC上的動(dòng)點(diǎn)(不含端點(diǎn)B,C),∴AE≤AD<AB,即3≤AD<5,∵AD為正整數(shù),∴AD=3或AD=4,當(dāng)AD=4時(shí),E的左右兩邊各有一個(gè)點(diǎn)D滿足條件,∴點(diǎn)D的個(gè)數(shù)共有3個(gè).故選C.考點(diǎn):等腰三角形的性質(zhì);勾股定理.3、C【解題分析】
根據(jù)圓錐的底面周長等于側(cè)面展開圖的扇形弧長,列出方程求出圓錐的底面半徑,再利用勾股定理求出圓錐的高.【題目詳解】解:半徑為12cm,圓心角為的扇形弧長是:,
設(shè)圓錐的底面半徑是rcm,
則,
解得:.
即這個(gè)圓錐形冰淇淋紙?zhí)椎牡酌姘霃绞?cm.
圓錐形冰淇淋紙?zhí)椎母邽椋?/p>
故選:C.【題目點(diǎn)撥】本題綜合考查有關(guān)扇形和圓錐的相關(guān)計(jì)算解題思路:解決此類問題時(shí)要緊緊抓住兩者之間的兩個(gè)對(duì)應(yīng)關(guān)系:圓錐的母線長等于側(cè)面展開圖的扇形半徑;圓錐的底面周長等于側(cè)面展開圖的扇形弧長正確對(duì)這兩個(gè)關(guān)系的記憶是解題的關(guān)鍵.4、A【解題分析】
連接AO并延長到E,連接BE.設(shè)AE=2R,則∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=AC2-DC2=52-【題目詳解】解:如圖,連接AO并延長到E,連接BE.設(shè)AE=2R,則∠ABE=90°,∠AEB=∠ACB;∵AD⊥BC于D點(diǎn),AC=5,DC=3,∴∠ADC=90°,∴AD=AC∴AB=在Rt△ABE與Rt△ADC中,∠ABE=∠ADC=90°,∠AEB=∠ACB,∴Rt△ABE∽R(shí)t△ADC,∴ABAD即2R=AB?ACAD=4∴⊙O的直徑等于52故答案選:A.【題目點(diǎn)撥】本題主要考查了圓周角定理、勾股定理,解題的關(guān)鍵是掌握輔助線的作法.5、B【解題分析】
根據(jù)同弧所對(duì)的圓周角是圓心角度數(shù)的一半即可解題.【題目詳解】∵∠BOC=40°,∠AOB=180°,∴∠BOC+∠AOB=220°,∴∠D=110°(同弧所對(duì)的圓周角是圓心角度數(shù)的一半),故選B.【題目點(diǎn)撥】本題考查了圓周角和圓心角的關(guān)系,屬于簡單題,熟悉概念是解題關(guān)鍵.6、B【解題分析】∵在正方形ABCD中,AB=,∴AC=4,AD=DC=,∠DAP=∠DCA=45o,當(dāng)點(diǎn)Q在AD上時(shí),PA=PQ,∴DP=AP=x,∴S=;當(dāng)點(diǎn)Q在DC上時(shí),PC=PQCP=4-x,∴S=;所以該函數(shù)圖象前半部分是拋物線開口向上,后半部分也為拋物線開口向下,故選B.【題目點(diǎn)撥】本題考查動(dòng)點(diǎn)問題的函數(shù)圖象,有一定難度,解題關(guān)鍵是注意點(diǎn)Q在AP、DC上這兩種情況.7、B【解題分析】過點(diǎn)A作AM⊥BC于點(diǎn)M,由題意可知當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)M時(shí),AP最小,此時(shí)長為4,觀察圖象可知AB=AC=5,∴BM==3,∴BC=2BM=6,∴S△ABC==12,故選B.【題目點(diǎn)撥】本題考查了動(dòng)點(diǎn)問題的函數(shù)圖象,根據(jù)已知和圖象能確定出AB、AC的長,以及點(diǎn)P運(yùn)動(dòng)到與BC垂直時(shí)最短是解題的關(guān)鍵.8、A【解題分析】
絕對(duì)值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.【題目詳解】解:將0.0000000076用科學(xué)計(jì)數(shù)法表示為.故選A.【題目點(diǎn)撥】本題考查了用科學(xué)計(jì)數(shù)法表示較小的數(shù),一般形式為a×,其中,n為由原數(shù)左邊起第一個(gè)不為0的數(shù)字前面的0的個(gè)數(shù)所決定.9、B【解題分析】
根據(jù)常見幾何體的展開圖即可得.【題目詳解】由展開圖可知第一個(gè)圖形是②正方體的展開圖,第2個(gè)圖形是①圓柱體的展開圖,第3個(gè)圖形是③三棱柱的展開圖,第4個(gè)圖形是④四棱錐的展開圖,故選B【題目點(diǎn)撥】本題考查的是幾何體,熟練掌握幾何體的展開面是解題的關(guān)鍵.10、B【解題分析】
根據(jù)矩形的面積=長×寬,我們可得出本題的等量關(guān)系應(yīng)該是:(風(fēng)景畫的長+2個(gè)紙邊的寬度)×(風(fēng)景畫的寬+2個(gè)紙邊的寬度)=整個(gè)掛圖的面積,由此可得出方程.【題目詳解】由題意,設(shè)金色紙邊的寬為,得出方程:(80+2x)(50+2x)=5400,整理后得:故選:B.【題目點(diǎn)撥】本題主要考查了由實(shí)際問題得出一元二次方程,對(duì)于面積問題應(yīng)熟記各種圖形的面積公式,然后根據(jù)等量關(guān)系列出方程是解題關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、3或1.2【解題分析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,繼而可確定點(diǎn)P在BD上,然后再根據(jù)△APD是等腰三角形,分DP=DA、AP=DP兩種情況進(jìn)行討論即可得.【題目詳解】∵四邊形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴點(diǎn)P在BD上,如圖1,當(dāng)DP=DA=8時(shí),BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如圖2,當(dāng)AP=DP時(shí),此時(shí)P為BD中點(diǎn),∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;綜上,PE的長為1.2或3,故答案為:1.2或3.【題目點(diǎn)撥】本題考查了相似三角形的性質(zhì),等腰三角形的性質(zhì),矩形的性質(zhì)等,確定出點(diǎn)P在線段BD上是解題的關(guān)鍵.12、2【解題分析】【分析】接把點(diǎn)P(a,b)代入反比例函數(shù)y=即可得出結(jié)論.【題目詳解】∵點(diǎn)P(a,b)在反比例函數(shù)y=的圖象上,∴b=,∴ab=2,故答案為:2.【題目點(diǎn)撥】本題考查的是反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn),熟知反比例函數(shù)圖象上各點(diǎn)的坐標(biāo)一定適合此函數(shù)的解析式是解答此題的關(guān)鍵.13、1【解題分析】
作AB的中點(diǎn)E,連接EM、CE,根據(jù)直角三角形斜邊上的中線等于斜邊的一半以及三角形的中位線定理求得CE和EM的長,然后在△CEM中根據(jù)三邊關(guān)系即可求解.【題目詳解】作AB的中點(diǎn)E,連接EM、CE,在直角△ABC中,AB===10,∵E是直角△ABC斜邊AB上的中點(diǎn),∴CE=AB=5,∵M(jìn)是BD的中點(diǎn),E是AB的中點(diǎn),∴ME=AD=2,∴在△CEM中,5-2≤CM≤5+2,即3≤CM≤1,∴最大值為1,故答案為1.【題目點(diǎn)撥】本題考查了點(diǎn)與圓的位置關(guān)系、三角形的中位線定理的知識(shí),要結(jié)合勾股定理、直角三角形斜邊上的中線等于斜邊的一半解答.14、1.【解題分析】
根據(jù)已知建立平面直角坐標(biāo)系,進(jìn)而求出二次函數(shù)解析式,再通過把y=-1.5代入拋物線解析式得出水面寬度,即可得出答案【題目詳解】解:建立平面直角坐標(biāo)系,設(shè)橫軸x通過AB,縱軸y通過AB中點(diǎn)O且通過C點(diǎn),則通過畫圖可得知O為原點(diǎn),
拋物線以y軸為對(duì)稱軸,且經(jīng)過A,B兩點(diǎn),OA和OB可求出為AB的一半1米,拋物線頂點(diǎn)C坐標(biāo)為(0,1),
設(shè)頂點(diǎn)式y(tǒng)=ax1+1,把A點(diǎn)坐標(biāo)(-1,0)代入得a=-0.5,
∴拋物線解析式為y=-0.5x1+1,
當(dāng)水面下降1.5米,通過拋物線在圖上的觀察可轉(zhuǎn)化為:
當(dāng)y=-1.5時(shí),對(duì)應(yīng)的拋物線上兩點(diǎn)之間的距離,也就是直線y=-1與拋物線相交的兩點(diǎn)之間的距離,
可以通過把y=-1.5代入拋物線解析式得出:
-1.5=-0.5x1+1,
解得:x=±3,
1×3-4=1,
所以水面下降1.5m,水面寬度增加1米.
故答案為1.【題目點(diǎn)撥】本題考查了二次函數(shù)的應(yīng)用,根據(jù)已知建立坐標(biāo)系從而得出二次函數(shù)解析式是解決問題的關(guān)鍵,學(xué)會(huì)把實(shí)際問題轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的性質(zhì)解決問題,屬于中考??碱}型.15、1【解題分析】
根據(jù)多邊形的內(nèi)角和定理:180°?(n-2)求解即可.【題目詳解】由題意可得:180°?(n-2)=150°?n,
解得n=1.
故多邊形是1邊形.16、1.【解題分析】
先根據(jù)相似三角形的判定得出△ABC∽△AED,再利用相似三角形的性質(zhì)解答即可.【題目詳解】∵∴又∵∠A=∠A,∴△ABC∽△AED,∴∵BC=30,∴DE=1,故答案為1.【題目點(diǎn)撥】考查相似三角形的判定與性質(zhì),掌握相似三角形的判定定理是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)(2)證明見解析(3)F在直徑BC下方的圓弧上,且【解題分析】
(1)由直線l與以BC為直徑的圓O相切于點(diǎn)C,即可得∠BCE=90°,∠BFC=∠CFE=90°,則可證得△CEF∽△BEC,然后根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得EF的長;(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根據(jù)同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,則可證得△CDF∽△BAF;②由△CDF∽△BAF與△CEF∽△BCF,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,易證得,又由AB=BC,即可證得CD=CE;(3)由CE=CD,可得BC=CD=CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度數(shù),則可得F在⊙O的下半圓上,且.【題目詳解】(1)解:∵直線l與以BC為直徑的圓O相切于點(diǎn)C.∴∠BCE=90°,又∵BC為直徑,∴∠BFC=∠CFE=90°,∵∠FEC=∠CEB,∴△CEF∽△BEC,∴,∵BE=15,CE=9,即:,解得:EF=;(2)證明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,∴∠ABF=∠FCD,同理:∠AFB=∠CFD,∴△CDF∽△BAF;②∵△CDF∽△BAF,∴,又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,∴△CEF∽△BCF,∴,∴,又∵AB=BC,∴CE=CD;(3)解:∵CE=CD,∴BC=CD=CE,在Rt△BCE中,tan∠CBE=,∴∠CBE=30°,故為60°,∴F在直徑BC下方的圓弧上,且.【題目點(diǎn)撥】考查了相似三角形的判定與性質(zhì),圓的切線的性質(zhì),圓周角的性質(zhì)以及三角函數(shù)的性質(zhì)等知識(shí).此題綜合性很強(qiáng),解題的關(guān)鍵是方程思想與數(shù)形結(jié)合思想的應(yīng)用.18、(1)NC∥AB;理由見解析;(2)∠ABC=∠ACN;理由見解析;(3);【解題分析】
(1)根據(jù)△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°從而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.
(2)根據(jù)△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據(jù)相似三角形的性質(zhì)得到,利用等腰三角形的性質(zhì)得到∠BAC=∠MAN,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;
(3)如圖3,連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45°,∠MAN=45°,根據(jù)相似三角形的性質(zhì)得出,得到BM=2,CM=8,再根據(jù)勾股定理即可得到答案.【題目詳解】(1)NC∥AB,理由如下:∵△ABC與△MN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,在△ABM與△ACN中,,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN∥AB;(2)∠ABC=∠ACN,理由如下:∵=1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=BC,∴∠BAC=(180°﹣∠ABC),∵AM=MN∴∠MAN=(180°﹣∠AMN),∵∠ABC=∠AMN,∴∠BAC=∠MAN,∴∠BAM=∠CAN,∴△ABM~△ACN,∴∠ABC=∠ACN;(3)如圖3,連接AB,AN,∵四邊形ADBC,AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴=cos45°=,∴,∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM=,∴EF=AM=2.【題目點(diǎn)撥】本題是四邊形綜合題目,考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的性質(zhì)定理和判定定理、相似三角形的性質(zhì)定理和判定定理等知識(shí);本題綜合性強(qiáng),有一定難度,證明三角形全等和三角形相似是解決問題的關(guān)鍵.19、(1)當(dāng)0≤x≤8時(shí),y=10x+20;當(dāng)8<x≤a時(shí),y=;(2)40;(3)要在7:50~8:10時(shí)間段內(nèi)接水.【解題分析】
(1)當(dāng)0≤x≤8時(shí),設(shè)y=k1x+b,將(0,20),(8,100)的坐標(biāo)分別代入y=k1x+b,即可求得k1、b的值,從而得一次函數(shù)的解析式;當(dāng)8<x≤a時(shí),設(shè)y=,將(8,100)的坐標(biāo)代入y=,求得k2的值,即可得反比例函數(shù)的解析式;(2)把y=20代入反比例函數(shù)的解析式,即可求得a值;(3)把y=40代入反比例函數(shù)的解析式,求得對(duì)應(yīng)x的值,根據(jù)想喝到不低于40℃的開水,結(jié)合函數(shù)圖象求得x的取值范圍,從而求得李老師接水的時(shí)間范圍.【題目詳解】解:(1)當(dāng)0≤x≤8時(shí),設(shè)y=k1x+b,將(0,20),(8,100)的坐標(biāo)分別代入y=k1x+b,可求得k1=10,b=20∴當(dāng)0≤x≤8時(shí),y=10x+20.當(dāng)8<x≤a時(shí),設(shè)y=,將(8,100)的坐標(biāo)代入y=,得k2=800∴當(dāng)8<x≤a時(shí),y=.綜上,當(dāng)0≤x≤8時(shí),y=10x+20;當(dāng)8<x≤a時(shí),y=(2)將y=20代入y=,解得x=40,即a=40.(3)當(dāng)y=40時(shí),x==20∴要想喝到不低于40℃的開水,x需滿足8≤x≤20,即李老師要在7:38到7:50之間接水.【題目點(diǎn)撥】本題主要考查了一次函數(shù)及反比例函數(shù)的應(yīng)用題,是一個(gè)分段函數(shù)問題,分段函數(shù)是在不同區(qū)間有不同對(duì)應(yīng)方式的函數(shù),要特別注意自變量取值范圍的劃分,既要科學(xué)合理,又要符合實(shí)際.20、(1)甲,乙兩種型號(hào)設(shè)備每臺(tái)的價(jià)格分別為12萬元和10萬元.(2)有6種購買方案.(3)最省錢的購買方案為,選購甲型設(shè)備4臺(tái),乙型設(shè)備6臺(tái).【解題分析】
(1)設(shè)甲、乙兩種型號(hào)設(shè)備每臺(tái)的價(jià)格分別為萬元和萬元,根據(jù)購買了3臺(tái)甲型設(shè)備比購買2臺(tái)乙型設(shè)備多花了16萬元,購買2臺(tái)甲型設(shè)備比購買3臺(tái)乙型設(shè)備少花6萬元可列出方程組,解之即可;(2)設(shè)購買甲型設(shè)備臺(tái),乙型設(shè)備臺(tái),根據(jù)購買節(jié)省能源的新設(shè)備的資金不超過110萬元列不等式,解之確定m的值,即可確定方案;(3)因?yàn)楣疽竺吭碌漠a(chǎn)量不低于2040噸,據(jù)此可得關(guān)于m的不等式,解之即可由m的值確定方案,然后進(jìn)行比較,做出選擇即可.【題目詳解】(1)設(shè)甲、乙兩種型號(hào)設(shè)備每臺(tái)的價(jià)格分別為萬元和萬元,由題意得:,解得:,則甲,乙兩種型號(hào)設(shè)備每臺(tái)的價(jià)格分別為12萬元和10萬元;(2)設(shè)購買甲型設(shè)備臺(tái),乙型設(shè)備臺(tái),則,∴,∵取非負(fù)整數(shù),∴,∴有6種購買方案;(3)由題意:,∴,∴為4或5,當(dāng)時(shí),購買資金為:(萬元),當(dāng)時(shí),購買資金為:(萬元),則最省錢的購買方案是選購甲型設(shè)備4臺(tái),乙型設(shè)備6臺(tái).【題目點(diǎn)撥】本題考查了二元一次方程組的應(yīng)用,一元一次不等式的應(yīng)用,弄清題意,找準(zhǔn)等量關(guān)系、不等關(guān)系列出方程組與不等式是解題的關(guān)鍵.21、(1)詳見解析;(2)的長為1;(3)m的值為或;與面積比為或.【解題分析】
由知,再由知、,據(jù)此可得,證≌即可得;
易知四邊形ABEF是矩形,設(shè),可得,證≌得,在中,由,列方程求解可得答案;
分點(diǎn)C在AF的左側(cè)和右側(cè)兩種情況求解:左側(cè)時(shí)由知、、,在中,由可得關(guān)于m的方程,解之可得;右側(cè)時(shí),由知、、,利用勾股定理求解可得.作于點(diǎn)G,延長GD交BE于點(diǎn)H,由≌知,據(jù)此可得,再分點(diǎn)D在矩形內(nèi)部和外部的情況求解可得.【題目詳解】如圖1,,,,、,,,≌,.,,,,,四邊形ABEF是矩形,設(shè),則,,,,,≌,,≌,,在中,,即,解得:,的長為1.如圖1,當(dāng)點(diǎn)C在AF的左側(cè)時(shí),,則,,,,在中,由可得,解得:負(fù)值舍去;如圖2,當(dāng)點(diǎn)C在AF的右側(cè)時(shí),,,,,,在中,由可得,解得:負(fù)值舍去;綜上,m的值為或;如圖3,過點(diǎn)D作于點(diǎn)G,延長GD交BE于點(diǎn)H,≌,,又,且,,當(dāng)點(diǎn)D在矩形ABEF的內(nèi)部時(shí),由可設(shè)、,則,,則;如圖4,當(dāng)點(diǎn)D在矩形ABEF的外部時(shí),由可設(shè)、,則,,則,綜上,與面積比為或.【題目點(diǎn)撥】本題考查了四邊形的綜合問題,解題的關(guān)鍵是掌握矩形的判定與性質(zhì)、全等三角形的判定和性質(zhì)及勾股定理、三角形的面積等知識(shí)點(diǎn).22、(Ⅰ)25、40;(Ⅱ)平均數(shù)為68.2分,眾數(shù)為7
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 錦州醫(yī)科大學(xué)醫(yī)療學(xué)院《代謝控制發(fā)酵》2023-2024學(xué)年第一學(xué)期期末試卷
- 新蘇教版一年級(jí)下冊(cè)數(shù)學(xué)第1單元第5課時(shí)《有關(guān)6、5、4、3、2的加減法》作業(yè)
- 懷化職業(yè)技術(shù)學(xué)院《特種膠黏劑》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖北美術(shù)學(xué)院《圖書情報(bào)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶三峽學(xué)院《數(shù)字信號(hào)處理俄》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶財(cái)經(jīng)學(xué)院《工程制圖與化工CAD》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江郵電職業(yè)技術(shù)學(xué)院《機(jī)器人理論及技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江工業(yè)大學(xué)《儀器分析專題》2023-2024學(xué)年第一學(xué)期期末試卷
- 地暖電磁閥工作原理
- 鄭州智能科技職業(yè)學(xué)院《水利水電工程概預(yù)算》2023-2024學(xué)年第一學(xué)期期末試卷
- 人教版初中英語八年級(jí)下冊(cè) 單詞默寫表 漢譯英
- GB/T 304.9-2008關(guān)節(jié)軸承通用技術(shù)規(guī)則
- GB/T 29353-2012養(yǎng)老機(jī)構(gòu)基本規(guī)范
- 2205雙相不銹鋼的焊接工藝
- 啤酒廠糖化車間熱量衡算
- 英文標(biāo)點(diǎn)符號(hào)用法(句號(hào)分號(hào)冒號(hào)問號(hào)感嘆號(hào))(課堂)課件
- 22部能夠療傷的身心靈療愈電影
- 領(lǐng)導(dǎo)干部有效授權(quán)的技巧與藝術(shù)課件
- DB37-T 1915-2020 安全生產(chǎn)培訓(xùn)質(zhì)量控制規(guī)范-(高清版)
- 陜西省商洛市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會(huì)明細(xì)
- 實(shí)習(xí)生請(qǐng)假條
評(píng)論
0/150
提交評(píng)論