2024屆廣東省廣州市番禺區(qū)中考聯(lián)考數(shù)學(xué)試卷含解析_第1頁(yè)
2024屆廣東省廣州市番禺區(qū)中考聯(lián)考數(shù)學(xué)試卷含解析_第2頁(yè)
2024屆廣東省廣州市番禺區(qū)中考聯(lián)考數(shù)學(xué)試卷含解析_第3頁(yè)
2024屆廣東省廣州市番禺區(qū)中考聯(lián)考數(shù)學(xué)試卷含解析_第4頁(yè)
2024屆廣東省廣州市番禺區(qū)中考聯(lián)考數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024學(xué)年廣東省廣州市番禺區(qū)中考聯(lián)考數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.已知地球上海洋面積約為361000000km2,361000000這個(gè)數(shù)用科學(xué)記數(shù)法可表示為()A.3.61×106 B.3.61×107 C.3.61×108 D.3.61×1092.在﹣3,﹣1,0,1四個(gè)數(shù)中,比﹣2小的數(shù)是()A.﹣3 B.﹣1 C.0 D.13.定義:若點(diǎn)P(a,b)在函數(shù)y=1x的圖象上,將以a為二次項(xiàng)系數(shù),b為一次項(xiàng)系數(shù)構(gòu)造的二次函數(shù)y=ax2+bx稱(chēng)為函數(shù)y=1x的一個(gè)“派生函數(shù)”.例如:點(diǎn)(2,12)在函數(shù)y=1x的圖象上,則函數(shù)y=2x2+(1)存在函數(shù)y=1x(2)函數(shù)y=1xA.命題(1)與命題(2)都是真命題B.命題(1)與命題(2)都是假命題C.命題(1)是假命題,命題(2)是真命題D.命題(1)是真命題,命題(2)是假命題4.如圖,已知Rt△ABC中,∠BAC=90°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使點(diǎn)D落在射線CA上,DE的延長(zhǎng)線交BC于F,則∠CFD的度數(shù)為()A.80° B.90° C.100° D.120°5.浙江省陸域面積為101800平方千米。數(shù)據(jù)101800用科學(xué)記數(shù)法表示為()A.1.018×104 B.1.018×105 C.10.18×105 D.0.1018×1066.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個(gè)結(jié)論:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠﹣1),其中結(jié)論正確的個(gè)數(shù)是()A.1 B.2 C.3 D.47.下列二次函數(shù)的圖象,不能通過(guò)函數(shù)y=3x2的圖象平移得到的是(

)A.y=3x2+2 B.y=3(x﹣1)2 C.y=3(x﹣1)2+2 D.y=2x28.對(duì)于二次函數(shù),下列說(shuō)法正確的是()A.當(dāng)x>0,y隨x的增大而增大B.當(dāng)x=2時(shí),y有最大值-3C.圖像的頂點(diǎn)坐標(biāo)為(-2,-7)D.圖像與x軸有兩個(gè)交點(diǎn)9.如圖,數(shù)軸上表示的是下列哪個(gè)不等式組的解集()A. B. C. D.10.下列四個(gè)幾何體,正視圖與其它三個(gè)不同的幾何體是()A. B.C. D.11.已知:a、b是不等于0的實(shí)數(shù),2a=3b,那么下列等式中正確的是()A.a(chǎn)b=23 B.a(chǎn)12.一個(gè)正多邊形的內(nèi)角和為900°,那么從一點(diǎn)引對(duì)角線的條數(shù)是()A.3 B.4 C.5 D.6二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,與中,,,,,AD的長(zhǎng)為_(kāi)_______.14.如圖,菱形ABCD和菱形CEFG中,∠ABC=60°,點(diǎn)B,C,E在同一條直線上,點(diǎn)D在CG上,BC=1,CE=3,H是AF的中點(diǎn),則CH的長(zhǎng)為_(kāi)_______.15.點(diǎn)A(x1,y1)、B(x1,y1)在二次函數(shù)y=x1﹣4x﹣1的圖象上,若當(dāng)1<x1<1,3<x1<4時(shí),則y1與y1的大小關(guān)系是y1_____y1.(用“>”、“<”、“=”填空)16.已知圓錐的底面圓半徑為3cm,高為4cm,則圓錐的側(cè)面積是________cm2.17.如圖,D,E分別是△ABC的邊AB、BC上的點(diǎn),且DE∥AC,AE、CD相交于點(diǎn)O,若S△DOE:S△COA=1:16,則S△BDE與S△CDE的比是___________.18.如圖是某商品的標(biāo)志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點(diǎn)A、B、C、D,得到四邊形ABCD,若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為_(kāi)____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,已知△ABC中,AB=AC=5,cosA=.求底邊BC的長(zhǎng).20.(6分)如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn).求證:△ACE≌△BCD;若AD=5,BD=12,求DE的長(zhǎng).21.(6分)如圖,平面直角坐標(biāo)系中,直線AB:交y軸于點(diǎn)A(0,1),交x軸于點(diǎn)B.直線x=1交AB于點(diǎn)D,交x軸于點(diǎn)E,P是直線x=1上一動(dòng)點(diǎn),且在點(diǎn)D的上方,設(shè)P(1,n).求直線AB的解析式和點(diǎn)B的坐標(biāo);求△ABP的面積(用含n的代數(shù)式表示);當(dāng)S△ABP=2時(shí),以PB為邊在第一象限作等腰直角三角形BPC,求出點(diǎn)C的坐標(biāo).22.(8分)如圖1,在菱形ABCD中,AB=,tan∠ABC=2,點(diǎn)E從點(diǎn)D出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿著射線DA的方向勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒),將線段CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個(gè)角α(α=∠BCD),得到對(duì)應(yīng)線段CF.(1)求證:BE=DF;(2)當(dāng)t=秒時(shí),DF的長(zhǎng)度有最小值,最小值等于;(3)如圖2,連接BD、EF、BD交EC、EF于點(diǎn)P、Q,當(dāng)t為何值時(shí),△EPQ是直角三角形?23.(8分)甲乙兩名同學(xué)做摸球游戲,他們把三個(gè)分別標(biāo)有1,2,3的大小和形狀完全相同的小球放在一個(gè)不透明的口袋中.求從袋中隨機(jī)摸出一球,標(biāo)號(hào)是1的概率;從袋中隨機(jī)摸出一球后放回,搖勻后再隨機(jī)摸出一球,若兩次摸出的球的標(biāo)號(hào)之和為偶數(shù)時(shí),則甲勝;若兩次摸出的球的標(biāo)號(hào)之和為奇數(shù)時(shí),則乙勝;試分析這個(gè)游戲是否公平?請(qǐng)說(shuō)明理由.24.(10分)如圖1,在Rt△ABC中,∠ABC=90°,BA=BC,直線MN是過(guò)點(diǎn)A的直線CD⊥MN于點(diǎn)D,連接BD.(1)觀察猜想張老師在課堂上提出問(wèn)題:線段DC,AD,BD之間有什么數(shù)量關(guān)系.經(jīng)過(guò)觀察思考,小明出一種思路:如圖1,過(guò)點(diǎn)B作BE⊥BD,交MN于點(diǎn)E,進(jìn)而得出:DC+AD=BD.(2)探究證明將直線MN繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到圖2的位置寫(xiě)出此時(shí)線段DC,AD,BD之間的數(shù)量關(guān)系,并證明(3)拓展延伸在直線MN繞點(diǎn)A旋轉(zhuǎn)的過(guò)程中,當(dāng)△ABD面積取得最大值時(shí),若CD長(zhǎng)為1,請(qǐng)直接寫(xiě)B(tài)D的長(zhǎng).25.(10分)(問(wèn)題發(fā)現(xiàn))(1)如圖(1)四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關(guān)系為;(拓展探究)(2)如圖(2)在Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點(diǎn)M,N.試猜想四邊形FMAN的形狀,并說(shuō)明理由;(解決問(wèn)題)(3)如圖(3)在正方形ABCD中,AB=2,以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD旋轉(zhuǎn)60°,得到正方形AB'C'D',請(qǐng)直接寫(xiě)出BD'平方的值.26.(12分)如圖,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得到矩形AB′C′D′,點(diǎn)C的對(duì)應(yīng)點(diǎn)C′恰好落在CB的延長(zhǎng)線上,邊AB交邊C′D′于點(diǎn)E.(1)求證:BC=BC′;(2)若AB=2,BC=1,求AE的長(zhǎng).27.(12分)如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)P是拋物線上在第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),且點(diǎn)P的橫坐標(biāo)為t.(1)求拋物線的表達(dá)式;(2)設(shè)拋物線的對(duì)稱(chēng)軸為l,l與x軸的交點(diǎn)為D.在直線l上是否存在點(diǎn)M,使得四邊形CDPM是平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(3)如圖2,連接BC,PB,PC,設(shè)△PBC的面積為S.①求S關(guān)于t的函數(shù)表達(dá)式;②求P點(diǎn)到直線BC的距離的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解題分析】分析:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值大于1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值小于1時(shí),n是負(fù)數(shù).解答:解:將361000000用科學(xué)記數(shù)法表示為3.61×1.故選C.2、A【解題分析】

因?yàn)檎龜?shù)是比0大的數(shù),負(fù)數(shù)是比0小的數(shù),正數(shù)比負(fù)數(shù)大;負(fù)數(shù)的絕對(duì)值越大,本身就越小,根據(jù)有理數(shù)比較大小的法則即可選出答案.【題目詳解】因?yàn)檎龜?shù)是比0大的數(shù),負(fù)數(shù)是比0小的數(shù),正數(shù)比負(fù)數(shù)大;負(fù)數(shù)的絕對(duì)值越大,本身就越小,所以在-3,-1,0,1這四個(gè)數(shù)中比-2小的數(shù)是-3,故選A.【題目點(diǎn)撥】本題主要考查有理數(shù)比較大小,解決本題的關(guān)鍵是要熟練掌握比較有理數(shù)大小的方法.3、C【解題分析】試題分析:(1)根據(jù)二次函數(shù)y=ax2+bx的性質(zhì)a、b同號(hào)對(duì)稱(chēng)軸在y軸左側(cè),a、b異號(hào)對(duì)稱(chēng)軸在y軸右側(cè)即可判斷.(2)根據(jù)“派生函數(shù)”y=ax2+bx,x=0時(shí),y=0,經(jīng)過(guò)原點(diǎn),不能得出結(jié)論.(1)∵P(a,b)在y=上,∴a和b同號(hào),所以對(duì)稱(chēng)軸在y軸左側(cè),∴存在函數(shù)y=的一個(gè)“派生函數(shù)”,其圖象的對(duì)稱(chēng)軸在y軸的右側(cè)是假命題.(2)∵函數(shù)y=的所有“派生函數(shù)”為y=ax2+bx,∴x=0時(shí),y=0,∴所有“派生函數(shù)”為y=ax2+bx經(jīng)過(guò)原點(diǎn),∴函數(shù)y=的所有“派生函數(shù)”,的圖象都進(jìn)過(guò)同一點(diǎn),是真命題.考點(diǎn):(1)命題與定理;(2)新定義型4、B【解題分析】

根據(jù)旋轉(zhuǎn)的性質(zhì)得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根據(jù)三角形外角性質(zhì)得出∠CFD=∠B+∠BEF,代入求出即可.【題目詳解】解:∵將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到△ADE,∴△ABC≌△ADE,∴∠B=∠D,∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,∴∠CFD=∠B+∠BEF=90°,故選:B.【題目點(diǎn)撥】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,三角形內(nèi)角和定理,三角形外角性質(zhì)的應(yīng)用,掌握旋轉(zhuǎn)變換的性質(zhì)是解題的關(guān)鍵.5、B【解題分析】.故選B.點(diǎn)睛:在把一個(gè)絕對(duì)值較大的數(shù)用科學(xué)記數(shù)法表示為的形式時(shí),我們要注意兩點(diǎn):①必須滿(mǎn)足:;②比原來(lái)的數(shù)的整數(shù)位數(shù)少1(也可以通過(guò)小數(shù)點(diǎn)移位來(lái)確定).6、C【解題分析】

試題解析:∵圖象與x軸有兩個(gè)交點(diǎn),∴方程ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根,∴b2﹣4ac>0,∴4ac﹣b2<0,①正確;∵﹣=﹣1,∴b=2a,∵a+b+c<0,∴b+b+c<0,3b+2c<0,∴②是正確;∵當(dāng)x=﹣2時(shí),y>0,∴4a﹣2b+c>0,∴4a+c>2b,③錯(cuò)誤;∵由圖象可知x=﹣1時(shí)該二次函數(shù)取得最大值,∴a﹣b+c>am2+bm+c(m≠﹣1).∴m(am+b)<a﹣b.故④正確∴正確的有①②④三個(gè),故選C.考點(diǎn):二次函數(shù)圖象與系數(shù)的關(guān)系.【題目詳解】請(qǐng)?jiān)诖溯斎朐斀猓?、D【解題分析】分析:根據(jù)平移變換只改變圖形的位置不改變圖形的形狀與大小對(duì)各選項(xiàng)分析判斷后利用排除法求解:A、y=3x2的圖象向上平移2個(gè)單位得到y(tǒng)=3x2+2,故本選項(xiàng)錯(cuò)誤;B、y=3x2的圖象向右平移1個(gè)單位得到y(tǒng)=3(x﹣1)2,故本選項(xiàng)錯(cuò)誤;C、y=3x2的圖象向右平移1個(gè)單位,向上平移2個(gè)單位得到y(tǒng)=3(x﹣1)2+2,故本選項(xiàng)錯(cuò)誤;D、y=3x2的圖象平移不能得到y(tǒng)=2x2,故本選項(xiàng)正確.故選D.8、B【解題分析】

二次函數(shù),所以二次函數(shù)的開(kāi)口向下,當(dāng)x<2,y隨x的增大而增大,選項(xiàng)A錯(cuò)誤;當(dāng)x=2時(shí),取得最大值,最大值為-3,選項(xiàng)B正確;頂點(diǎn)坐標(biāo)為(2,-3),選項(xiàng)C錯(cuò)誤;頂點(diǎn)坐標(biāo)為(2,-3),拋物線開(kāi)口向下可得拋物線與x軸沒(méi)有交點(diǎn),選項(xiàng)D錯(cuò)誤,故答案選B.考點(diǎn):二次函數(shù)的性質(zhì).9、B【解題分析】

根據(jù)數(shù)軸上不等式解集的表示方法得出此不等式組的解集,再對(duì)各選項(xiàng)進(jìn)行逐一判斷即可.【題目詳解】解:由數(shù)軸上不等式解集的表示方法得出此不等式組的解集為:x≥-3,

A、不等式組的解集為x>-3,故A錯(cuò)誤;B、不等式組的解集為x≥-3,故B正確;C、不等式組的解集為x<-3,故C錯(cuò)誤;D、不等式組的解集為-3<x<5,故D錯(cuò)誤.故選B.【題目點(diǎn)撥】本題考查的是在數(shù)軸上表示一元一次不等式組的解集,根據(jù)題意得出數(shù)軸上不等式組的解集是解答此題的關(guān)鍵.10、C【解題分析】

根據(jù)幾何體的三視圖畫(huà)法先畫(huà)出物體的正視圖再解答.【題目詳解】解:A、B、D三個(gè)幾何體的主視圖是由左上一個(gè)正方形、下方兩個(gè)正方形構(gòu)成的,而C選項(xiàng)的幾何體是由上方2個(gè)正方形、下方2個(gè)正方形構(gòu)成的,故選:C.【題目點(diǎn)撥】此題重點(diǎn)考查學(xué)生對(duì)幾何體三視圖的理解,掌握幾何體的主視圖是解題的關(guān)鍵.11、B【解題分析】∵2a=3b,∴ab=3故選B.12、B【解題分析】

n邊形的內(nèi)角和可以表示成(n-2)?180°,設(shè)這個(gè)多邊形的邊數(shù)是n,就得到關(guān)于邊數(shù)的方程,從而求出邊數(shù),再求從一點(diǎn)引對(duì)角線的條數(shù).【題目詳解】設(shè)這個(gè)正多邊形的邊數(shù)是n,則

(n-2)?180°=900°,

解得:n=1.

則這個(gè)正多邊形是正七邊形.所以,從一點(diǎn)引對(duì)角線的條數(shù)是:1-3=4.故選B【題目點(diǎn)撥】本題考核知識(shí)點(diǎn):多邊形的內(nèi)角和.解題關(guān)鍵點(diǎn):熟記多邊形內(nèi)角和公式.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、【解題分析】

先證明△ABC∽△ADB,然后根據(jù)相似三角形的判定與性質(zhì)列式求解即可.【題目詳解】∵,,∴△ABC∽△ADB,∴,∵,,∴,∴AD=.故答案為:.【題目點(diǎn)撥】本題考查了相似三角形的判定與性質(zhì):在判定兩個(gè)三角形相似時(shí),應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過(guò)作平行線構(gòu)造相似三角形.靈活運(yùn)用相似三角形的性質(zhì)進(jìn)行幾何計(jì)算.14、【解題分析】

連接AC、CF,GE,根據(jù)菱形性質(zhì)求出AC、CF,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答即可.【題目詳解】解:如圖,連接AC、CF、GE,CF和GE相交于O點(diǎn)∵在菱形ABCD中,,BC=1,∴,AC=1,∴∵在菱形CEFG中,是它的對(duì)角線,∴,∴,∴∵==,∴在,又∵H是AF的中點(diǎn)∴.【題目點(diǎn)撥】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),菱形的性質(zhì),勾股定理,熟記各性質(zhì)并作輔助線構(gòu)造出直角三角形是解題的關(guān)鍵.15、<【解題分析】

先根據(jù)二次函數(shù)的解析式判斷出拋物線的開(kāi)口方向及對(duì)稱(chēng)軸,根據(jù)圖象上的點(diǎn)的橫坐標(biāo)距離對(duì)稱(chēng)軸的遠(yuǎn)近來(lái)判斷縱坐標(biāo)的大?。绢}目詳解】由二次函數(shù)y=x1-4x-1=(x-1)1-5可知,其圖象開(kāi)口向上,且對(duì)稱(chēng)軸為x=1,

∵1<x1<1,3<x1<4,

∴A點(diǎn)橫坐標(biāo)離對(duì)稱(chēng)軸的距離小于B點(diǎn)橫坐標(biāo)離對(duì)稱(chēng)軸的距離,

∴y1<y1.

故答案為<.16、15π【解題分析】【分析】設(shè)圓錐母線長(zhǎng)為l,根據(jù)勾股定理求出母線長(zhǎng),再根據(jù)圓錐側(cè)面積公式即可得出答案.【題目詳解】設(shè)圓錐母線長(zhǎng)為l,∵r=3,h=4,∴母線l=,∴S側(cè)=×2πr×5=×2π×3×5=15π,故答案為15π.【題目點(diǎn)撥】本題考查了圓錐的側(cè)面積,熟知圓錐的母線長(zhǎng)、底面半徑、圓錐的高以及圓錐的側(cè)面積公式是解題的關(guān)鍵.17、1:3【解題分析】根據(jù)相似三角形的判定,由DE∥AC,可知△DOE∽△COA,△BDE∽△BCA,然后根據(jù)相似三角形的面積比等于相似比的平方,可由,求得DE:AC=1:4,即BE:BC=1:4,因此可得BE:EC=1:3,最后根據(jù)同高不同底的三角形的面積可知與的比是1:3.故答案為1:3.18、10πcm1.【解題分析】

根據(jù)已知條件得到四邊形ABCD是矩形,求得圖中陰影部分的面積=S扇形AOD+S扇形BOC=1S扇形AOD,根據(jù)等腰三角形的性質(zhì)得到∠BAC=∠ABO=36°,由圓周角定理得到∠AOD=71°,于是得到結(jié)論.【題目詳解】解:∵AC與BD是⊙O的兩條直徑,∴∠ABC=∠ADC=∠DAB=∠BCD=90°,∴四邊形ABCD是矩形,∴S△ABO=S△CDO=S△AOD=S△BOD,∴圖中陰影部分的面積=S扇形AOD+S扇形BOC=1S扇形AOD,∵OA=OB,∴∠BAC=∠ABO=36°,∴∠AOD=71°,∴圖中陰影部分的面積=1×=10π,故答案為10πcm1.點(diǎn)睛:本題考查了扇形的面積,矩形的判定和性質(zhì),圓周角定理的推論,三角形外角的性質(zhì),熟練掌握扇形的面積公式是解題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、【解題分析】

過(guò)點(diǎn)B作BD⊥AC,在△ABD中由cosA=可計(jì)算出AD的值,進(jìn)而求出BD的值,再由勾股定理求出BC的值.【題目詳解】解:過(guò)點(diǎn)B作BD⊥AC,垂足為點(diǎn)D,在Rt△ABD中,,∵,AB=5,∴AD=AB·cosA=5×=3,∴BD=4,∵AC=5,∴DC=2,∴BC=.【題目點(diǎn)撥】本題考查了銳角的三角函數(shù)和勾股定理的運(yùn)用.20、(1)證明見(jiàn)解析(2)13【解題分析】

(1)先根據(jù)同角的余角相等得到∠ACE=∠BCD,再結(jié)合等腰直角三角形的性質(zhì)即可證得結(jié)論;(2)根據(jù)全等三角形的性質(zhì)可得AE=BD,∠EAC=∠B=45°,即可證得△AED是直角三角形,再利用勾股定理即可求出DE的長(zhǎng).【題目詳解】(1)∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA∴∠ACE=∠BCD∴△ACE≌△BCD(SAS);(2)∵△ACB和△ECD都是等腰直角三角形∴∠BAC=∠B=45°∵△ACE≌△BCD∴AE=BD=12,∠EAC=∠B=45°∴∠EAD=∠EAC+∠BAC=90°,∴△EAD是直角三角形【題目點(diǎn)撥】解答本題的關(guān)鍵是熟練掌握全等三角形的性質(zhì):全等三角形的對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等.21、(1)AB的解析式是y=-x+1.點(diǎn)B(3,0).(2)n-1;(3)(3,4)或(5,2)或(3,2).【解題分析】試題分析:(1)把A的坐標(biāo)代入直線AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐標(biāo);(2)過(guò)點(diǎn)A作AM⊥PD,垂足為M,求得AM的長(zhǎng),即可求得△BPD和△PAB的面積,二者的和即可求得;(3)當(dāng)S△ABP=2時(shí),n-1=2,解得n=2,則∠OBP=45°,然后分A、B、P分別是直角頂點(diǎn)求解.試題解析:(1)∵y=-x+b經(jīng)過(guò)A(0,1),∴b=1,∴直線AB的解析式是y=-x+1.當(dāng)y=0時(shí),0=-x+1,解得x=3,∴點(diǎn)B(3,0).(2)過(guò)點(diǎn)A作AM⊥PD,垂足為M,則有AM=1,∵x=1時(shí),y=-x+1=,P在點(diǎn)D的上方,∴PD=n-,S△APD=PD?AM=×1×(n-)=n-由點(diǎn)B(3,0),可知點(diǎn)B到直線x=1的距離為2,即△BDP的邊PD上的高長(zhǎng)為2,∴S△BPD=PD×2=n-,∴S△PAB=S△APD+S△BPD=n-+n-=n-1;(3)當(dāng)S△ABP=2時(shí),n-1=2,解得n=2,∴點(diǎn)P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1種情況,如圖1,∠CPB=90°,BP=PC,過(guò)點(diǎn)C作CN⊥直線x=1于點(diǎn)N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2種情況,如圖2∠PBC=90°,BP=BC,過(guò)點(diǎn)C作CF⊥x軸于點(diǎn)F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2).第3種情況,如圖3,∠PCB=90°,CP=EB,∴∠CPB=∠EBP=45°,在△PCB和△PEB中,∴△PCB≌△PEB(SAS),∴PC=CB=PE=EB=2,∴C(3,2).∴以PB為邊在第一象限作等腰直角三角形BPC,點(diǎn)C的坐標(biāo)是(3,4)或(5,2)或(3,2).考點(diǎn):一次函數(shù)綜合題.22、(1)見(jiàn)解析;(2)t=(6+6),最小值等于12;(3)t=6秒或6秒時(shí),△EPQ是直角三角形【解題分析】

(1)由∠ECF=∠BCD得∠DCF=∠BCE,結(jié)合DC=BC、CE=CF證△DCF≌△BCE即可得;(2)作BE′⊥DA交DA的延長(zhǎng)線于E′.當(dāng)點(diǎn)E運(yùn)動(dòng)至點(diǎn)E′時(shí),由DF=BE′知此時(shí)DF最小,求得BE′、AE′即可得答案;(3)①∠EQP=90°時(shí),由∠ECF=∠BCD、BC=DC、EC=FC得∠BCP=∠EQP=90°,根據(jù)AB=CD=6,tan∠ABC=tan∠ADC=2即可求得DE;②∠EPQ=90°時(shí),由菱形ABCD的對(duì)角線AC⊥BD知EC與AC重合,可得DE=6.【題目詳解】(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,∴∠DCF=∠BCE,∵四邊形ABCD是菱形,∴DC=BC,在△DCF和△BCE中,,∴△DCF≌△BCE(SAS),∴DF=BE;(2)如圖1,作BE′⊥DA交DA的延長(zhǎng)線于E′.當(dāng)點(diǎn)E運(yùn)動(dòng)至點(diǎn)E′時(shí),DF=BE′,此時(shí)DF最小,在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=2,∴設(shè)AE′=x,則BE′=2x,∴AB=x=6,x=6,則AE′=6∴DE′=6+6,DF=BE′=12,時(shí)間t=6+6,故答案為:6+6,12;(3)∵CE=CF,∴∠CEQ<90°,①當(dāng)∠EQP=90°時(shí),如圖2①,∵∠ECF=∠BCD,BC=DC,EC=FC,∴∠CBD=∠CEF,∵∠BPC=∠EPQ,∴∠BCP=∠EQP=90°,∵AB=CD=6,tan∠ABC=tan∠ADC=2,∴DE=6,∴t=6秒;②當(dāng)∠EPQ=90°時(shí),如圖2②,∵菱形ABCD的對(duì)角線AC⊥BD,∴EC與AC重合,∴DE=6,∴t=6秒,綜上所述,t=6秒或6秒時(shí),△EPQ是直角三角形.【題目點(diǎn)撥】此題是菱形與動(dòng)點(diǎn)問(wèn)題,考查菱形的性質(zhì),三角形全等的判定定理,等腰三角形的性質(zhì),最短路徑問(wèn)題,注意(3)中的直角沒(méi)有明確時(shí)應(yīng)分情況討論解答.23、(1);(2)這個(gè)游戲不公平,理由見(jiàn)解析.【解題分析】

(1)由把三個(gè)分別標(biāo)有1,2,3的大小和形狀完全相同的小球放在一個(gè)不透明的口袋中,直接利用概率公式求解即可求得答案;(2)首先根據(jù)題意畫(huà)出樹(shù)狀圖,然后由樹(shù)狀圖求得所有等可能的結(jié)果與甲勝,乙勝的情況,即可求得求概率,比較大小,即可知這個(gè)游戲是否公平.【題目詳解】解:(1)由于三個(gè)分別標(biāo)有1,2,3的大小和形狀完全相同的小球放在一個(gè)不透明的口袋中,故從袋中隨機(jī)摸出一球,標(biāo)號(hào)是1的概率為:;(2)這個(gè)游戲不公平.畫(huà)樹(shù)狀圖得:∵共有9種等可能的結(jié)果,兩次摸出的球的標(biāo)號(hào)之和為偶數(shù)的有5種情況,兩次摸出的球的標(biāo)號(hào)之和為奇數(shù)的有4種情況,∴P(甲勝)=,P(乙勝)=.∴P(甲勝)≠P(乙勝),故這個(gè)游戲不公平.【題目點(diǎn)撥】本題考查的是游戲公平性的判斷.判斷游戲公平性就要計(jì)算每個(gè)事件的概率,概率相等就公平,否則就不公平.24、(1);(2)AD﹣DC=BD;(3)BD=AD=+1.【解題分析】

(1)根據(jù)全等三角形的性質(zhì)求出DC,AD,BD之間的數(shù)量關(guān)系(2)過(guò)點(diǎn)B作BE⊥BD,交MN于點(diǎn)E.AD交BC于O,證明,得到,,根據(jù)為等腰直角三角形,得到,再根據(jù),即可解出答案.(3)根據(jù)A、B、C、D四點(diǎn)共圓,得到當(dāng)點(diǎn)D在線段AB的垂直平分線上且在AB的右側(cè)時(shí),△ABD的面積最大.在DA上截取一點(diǎn)H,使得CD=DH=1,則易證,由即可得出答案.【題目詳解】解:(1)如圖1中,由題意:,∴AE=CD,BE=BD,∴CD+AD=AD+AE=DE,∵是等腰直角三角形,∴DE=BD,∴DC+AD=BD,故答案為.(2).證明:如圖,過(guò)點(diǎn)B作BE⊥BD,交MN于點(diǎn)E.AD交BC于O.∵,∴,∴.∵,,,∴,∴.又∵,∴,∴,,∴為等腰直角三角形,.∵,∴.(3)如圖3中,易知A、B、C、D四點(diǎn)共圓,當(dāng)點(diǎn)D在線段AB的垂直平分線上且在AB的右側(cè)時(shí),△ABD的面積最大.此時(shí)DG⊥AB,DB=DA,在DA上截取一點(diǎn)H,使得CD=DH=1,則易證,∴.【題目點(diǎn)撥】本題主要考查全等三角形的性質(zhì),等腰直角三角形的性質(zhì)以及圖形的應(yīng)用,正確作輔助線和熟悉圖形特性是解題的關(guān)鍵.25、(1)AC垂直平分BD;(2)四邊形FMAN是矩形,理由見(jiàn)解析;(3)16+8或16﹣8【解題分析】

(1)依據(jù)點(diǎn)A在線段BD的垂直平分線上,點(diǎn)C在線段BD的垂直平分線上,即可得出AC垂直平分BD;(2)根據(jù)Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),可得AF=CF=BF,再根據(jù)等腰三角形ABD和等腰三角形ACE,即可得到AD=DB,AE=CE,進(jìn)而得出∠AMF=∠MAN=∠ANF=90°,即可判定四邊形AMFN是矩形;(3)分兩種情況:①以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD逆時(shí)針旋轉(zhuǎn)60°,②以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD順時(shí)針旋轉(zhuǎn)60°,分別依據(jù)旋轉(zhuǎn)的性質(zhì)以及勾股定理,即可得到結(jié)論.【題目詳解】(1)∵AB=AD,CB=CD,∴點(diǎn)A在線段BD的垂直平分線上,點(diǎn)C在線段BD的垂直平分線上,∴AC垂直平分BD,故答案為AC垂直平分BD;(2)四邊形FMAN是矩形.理由:如圖2,連接AF,∵Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),∴AF=CF=BF,又∵等腰三角形ABD和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90°,∴∠AMF=∠MAN=∠ANF=90°,∴四邊形AMFN是矩形;(3)BD′的平方為16+8或16﹣8.分兩種情況:①以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD逆時(shí)針旋轉(zhuǎn)60°,如圖所示:過(guò)D'作D'E⊥AB,交BA的延長(zhǎng)線于E,由旋轉(zhuǎn)可得,∠DAD'=60°,∴∠EAD'=30°,∵AB=2=AD',∴D'E=AD'=,AE=,∴BE=2+,∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8②以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD順時(shí)針旋轉(zhuǎn)60°,如圖所示:過(guò)B作BF⊥AD'于F,旋轉(zhuǎn)可得,∠DAD'=60°,∴∠BAD'=30°,∵AB=2=AD',∴BF=AB=,AF=,∴D'F=2﹣,∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8綜上所述,BD′平方的長(zhǎng)度為16+8或16﹣8.【題目點(diǎn)撥】本題屬于四邊形綜合題,主要考查了正方形的性質(zhì),矩形的判定,旋轉(zhuǎn)的性質(zhì),線段垂直平分線的性質(zhì)以及勾股定理的綜合運(yùn)用,解決問(wèn)題的關(guān)鍵是作輔助線構(gòu)造直角三角形,依據(jù)勾股定理進(jìn)行計(jì)算求解.解題時(shí)注意:有三個(gè)角是直角的四邊形是矩形.26、(1)證明見(jiàn)解析;(2)AE=.【解題分析】

(1)連結(jié)AC、AC′,根據(jù)矩形的性質(zhì)得到∠ABC=90°,即AB⊥CC′,根據(jù)旋轉(zhuǎn)的性質(zhì)即可得到結(jié)論;(2)根據(jù)矩形的性質(zhì)得到AD=BC,∠D=∠ABC′=90°,根據(jù)旋轉(zhuǎn)的性質(zhì)得到BC′=AD′,AD=AD′,證得BC′=AD′,根據(jù)全等三角形的性質(zhì)得到BE=D′E,設(shè)AE=x,則D′E=2﹣x,根據(jù)勾股定理列方程即可得到結(jié)論.【題目詳解】解::(1)連結(jié)AC、AC′,∵四邊形ABCD為矩形,∴∠ABC=90°,即AB⊥CC′,∵將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得到矩形AB′C′D′,∴AC=AC′,∴BC=BC′;(2)∵四邊形ABCD為矩形,∴AD=BC,∠D=∠ABC′=90°,∵BC=BC′,∴BC′=AD′,∵將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得到矩形AB′C′D′,∴AD=AD′,∴BC′=AD′,在△AD′E與△C′BE中∴△AD′E≌△C′BE,∴BE=D′E,設(shè)AE=x,則D′E=2﹣x,在Rt△AD′E中,∠D′=90°,由勾定理,得x2﹣(2﹣x)2=1,解得x=,∴AE=

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論