版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年江蘇省姜堰區(qū)蔣垛中學(xué)高三數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.M、N是曲線y=πsinx與曲線y=πcosx的兩個(gè)不同的交點(diǎn),則|MN|的最小值為()A.π B.π C.π D.2π2.公元前世紀(jì),古希臘哲學(xué)家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)谋?當(dāng)比賽開始后,若阿基里斯跑了米,此時(shí)烏龜便領(lǐng)先他米,當(dāng)阿基里斯跑完下一個(gè)米時(shí),烏龜先他米,當(dāng)阿基里斯跑完下-個(gè)米時(shí),烏龜先他米....所以,阿基里斯永遠(yuǎn)追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時(shí),烏龜爬行的總距離為()A.米 B.米C.米 D.米3.下列函數(shù)中,在定義域上單調(diào)遞增,且值域?yàn)榈氖牵ǎ〢. B. C. D.4.若,則,,,的大小關(guān)系為()A. B.C. D.5.棱長(zhǎng)為2的正方體內(nèi)有一個(gè)內(nèi)切球,過(guò)正方體中兩條異面直線,的中點(diǎn)作直線,則該直線被球面截在球內(nèi)的線段的長(zhǎng)為()A. B. C. D.16.在中,分別為所對(duì)的邊,若函數(shù)有極值點(diǎn),則的范圍是()A. B.C. D.7.已知,,,則()A. B.C. D.8.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.9.二項(xiàng)式的展開式中,常數(shù)項(xiàng)為()A. B.80 C. D.16010.函數(shù)的部分圖象如圖所示,則()A.6 B.5 C.4 D.311.命題“”的否定是()A. B.C. D.12.若函數(shù)(其中,圖象的一個(gè)對(duì)稱中心為,,其相鄰一條對(duì)稱軸方程為,該對(duì)稱軸處所對(duì)應(yīng)的函數(shù)值為,為了得到的圖象,則只要將的圖象()A.向右平移個(gè)單位長(zhǎng)度 B.向左平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,,則_________.14.函數(shù)在區(qū)間(-∞,1)上遞增,則實(shí)數(shù)a的取值范圍是____15.在中,、的坐標(biāo)分別為,,且滿足,為坐標(biāo)原點(diǎn),若點(diǎn)的坐標(biāo)為,則的取值范圍為__________.16.在平面直角坐標(biāo)系xOy中,已知雙曲線(a>0)的一條漸近線方程為,則a=_______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;(2)設(shè)直線與曲線相交于兩點(diǎn),的頂點(diǎn)也在曲線上運(yùn)動(dòng),求面積的最大值.18.(12分)如圖,在平行四邊形中,,,現(xiàn)沿對(duì)角線將折起,使點(diǎn)A到達(dá)點(diǎn)P,點(diǎn)M,N分別在直線,上,且A,B,M,N四點(diǎn)共面.(1)求證:;(2)若平面平面,二面角平面角大小為,求直線與平面所成角的正弦值.19.(12分)已知,,分別是三個(gè)內(nèi)角,,的對(duì)邊,.(1)求;(2)若,,求,.20.(12分)已知圓O經(jīng)過(guò)橢圓C:的兩個(gè)焦點(diǎn)以及兩個(gè)頂點(diǎn),且點(diǎn)在橢圓C上.求橢圓C的方程;若直線l與圓O相切,與橢圓C交于M、N兩點(diǎn),且,求直線l的傾斜角.21.(12分)已知在平面直角坐標(biāo)系中,橢圓的焦點(diǎn)為為橢圓上任意一點(diǎn),且.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若直線交橢圓于兩點(diǎn),且滿足(分別為直線的斜率),求的面積為時(shí)直線的方程.22.(10分)定義:若數(shù)列滿足所有的項(xiàng)均由構(gòu)成且其中有個(gè),有個(gè),則稱為“﹣數(shù)列”.(1)為“﹣數(shù)列”中的任意三項(xiàng),則使得的取法有多少種?(2)為“﹣數(shù)列”中的任意三項(xiàng),則存在多少正整數(shù)對(duì)使得且的概率為.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
兩函數(shù)的圖象如圖所示,則圖中|MN|最小,設(shè)M(x1,y1),N(x2,y2),則x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故選C.2、D【解析】
根據(jù)題意,是一個(gè)等比數(shù)列模型,設(shè),由,解得,再求和.【詳解】根據(jù)題意,這是一個(gè)等比數(shù)列模型,設(shè),所以,解得,所以.故選:D【點(diǎn)睛】本題主要考查等比數(shù)列的實(shí)際應(yīng)用,還考查了建模解模的能力,屬于中檔題.3、B【解析】
分別作出各個(gè)選項(xiàng)中的函數(shù)的圖象,根據(jù)圖象觀察可得結(jié)果.【詳解】對(duì)于,圖象如下圖所示:則函數(shù)在定義域上不單調(diào),錯(cuò)誤;對(duì)于,的圖象如下圖所示:則在定義域上單調(diào)遞增,且值域?yàn)椋_;對(duì)于,的圖象如下圖所示:則函數(shù)單調(diào)遞增,但值域?yàn)椋e(cuò)誤;對(duì)于,的圖象如下圖所示:則函數(shù)在定義域上不單調(diào),錯(cuò)誤.故選:.【點(diǎn)睛】本題考查函數(shù)單調(diào)性和值域的判斷問(wèn)題,屬于基礎(chǔ)題.4、D【解析】因?yàn)?,所以,因?yàn)椋?,所?.綜上;故選D.5、C【解析】
連結(jié)并延長(zhǎng)PO,交對(duì)棱C1D1于R,則R為對(duì)棱的中點(diǎn),取MN的中點(diǎn)H,則OH⊥MN,推導(dǎo)出OH∥RQ,且OH=RQ=,由此能求出該直線被球面截在球內(nèi)的線段的長(zhǎng).【詳解】如圖,MN為該直線被球面截在球內(nèi)的線段連結(jié)并延長(zhǎng)PO,交對(duì)棱C1D1于R,則R為對(duì)棱的中點(diǎn),取MN的中點(diǎn)H,則OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故選:C.【點(diǎn)睛】本題主要考查該直線被球面截在球內(nèi)的線段的長(zhǎng)的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.6、D【解析】試題分析:由已知可得有兩個(gè)不等實(shí)根.考點(diǎn):1、余弦定理;2、函數(shù)的極值.【方法點(diǎn)晴】本題考查余弦定理,函數(shù)的極值,涉及函數(shù)與方程思想思想、數(shù)形結(jié)合思想和轉(zhuǎn)化化歸思想,考查邏輯思維能力、等價(jià)轉(zhuǎn)化能力、運(yùn)算求解能力,綜合性較強(qiáng),屬于較難題型.首先利用轉(zhuǎn)化化歸思想將原命題轉(zhuǎn)化為有兩個(gè)不等實(shí)根,從而可得.7、C【解析】
利用二倍角公式,和同角三角函數(shù)的商數(shù)關(guān)系式,化簡(jiǎn)可得,即可求得結(jié)果.【詳解】,所以,即.故選:C.【點(diǎn)睛】本題考查三角恒等變換中二倍角公式的應(yīng)用和弦化切化簡(jiǎn)三角函數(shù),難度較易.8、A【解析】
利用已知條件畫出幾何體的直觀圖,然后求解幾何體的體積.【詳解】幾何體的三視圖的直觀圖如圖所示,則該幾何體的體積為:.故選:.【點(diǎn)睛】本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關(guān)鍵.9、A【解析】
求出二項(xiàng)式的展開式的通式,再令的次數(shù)為零,可得結(jié)果.【詳解】解:二項(xiàng)式展開式的通式為,令,解得,則常數(shù)項(xiàng)為.故選:A.【點(diǎn)睛】本題考查二項(xiàng)式定理指定項(xiàng)的求解,關(guān)鍵是熟練應(yīng)用二項(xiàng)展開式的通式,是基礎(chǔ)題.10、A【解析】
根據(jù)正切函數(shù)的圖象求出A、B兩點(diǎn)的坐標(biāo),再求出向量的坐標(biāo),根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算求出結(jié)果.【詳解】由圖象得,令=0,即=kπ,k=0時(shí)解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故選:A.【點(diǎn)睛】本題考查正切函數(shù)的圖象,平面向量數(shù)量積的運(yùn)算,屬于綜合題,但是難度不大,解題關(guān)鍵是利用圖象與正切函數(shù)圖象求出坐標(biāo),再根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算可得結(jié)果,屬于簡(jiǎn)單題.11、D【解析】
根據(jù)全稱命題的否定是特稱命題,對(duì)命題進(jìn)行改寫即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.【點(diǎn)睛】本題考查全稱命題的否定,難度容易.12、B【解析】
由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出,由五點(diǎn)法作圖求出的值,可得的解析式,再根據(jù)函數(shù)的圖象變換規(guī)律,誘導(dǎo)公式,得出結(jié)論.【詳解】根據(jù)已知函數(shù)其中,的圖象過(guò)點(diǎn),,可得,,解得:.再根據(jù)五點(diǎn)法作圖可得,可得:,可得函數(shù)解析式為:故把的圖象向左平移個(gè)單位長(zhǎng)度,可得的圖象,故選B.【點(diǎn)睛】本題主要考查由函數(shù)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出,由五點(diǎn)法作圖求出的值,函數(shù)的圖象變換規(guī)律,誘導(dǎo)公式的應(yīng)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)交集的定義即可寫出答案?!驹斀狻浚?,故填【點(diǎn)睛】本題考查集合的交集,需熟練掌握集合交集的定義,屬于基礎(chǔ)題。14、【解析】
根據(jù)復(fù)合函數(shù)單調(diào)性同增異減,結(jié)合二次函數(shù)的性質(zhì)、對(duì)數(shù)型函數(shù)的定義域列不等式組,解不等式求得的取值范圍.【詳解】由二次函數(shù)的性質(zhì)和復(fù)合函數(shù)的單調(diào)性可得解得.故答案為:【點(diǎn)睛】本小題主要考查根據(jù)對(duì)數(shù)型復(fù)合函數(shù)的單調(diào)性求參數(shù)的取值范圍,屬于基礎(chǔ)題.15、【解析】
由正弦定理可得點(diǎn)在曲線上,設(shè),則,將代入可得,利用二次函數(shù)的性質(zhì)可得范圍.【詳解】解:由正弦定理得,則點(diǎn)在曲線上,設(shè),則,,又,,因?yàn)椋瑒t,即的取值范圍為.故答案為:.【點(diǎn)睛】本題考查雙曲線的定義,考查向量數(shù)量積的坐標(biāo)運(yùn)算,考查學(xué)生計(jì)算能力,有一定的綜合性,但難度不大.16、3【解析】
雙曲線的焦點(diǎn)在軸上,漸近線為,結(jié)合漸近線方程為可求.【詳解】因?yàn)殡p曲線(a>0)的漸近線為,且一條漸近線方程為,所以.故答案為:.【點(diǎn)睛】本題主要考查雙曲線的漸近線,明確雙曲線的焦點(diǎn)位置,寫出雙曲線的漸近線方程的對(duì)應(yīng)形式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1):,:;(2)【解析】
(1)由直線參數(shù)方程消去參數(shù)即可得直線的普通方程,根據(jù)極坐標(biāo)方程和直角坐標(biāo)方程互化的公式即可得曲線的直角坐標(biāo)方程;(2)由即可得的底,由點(diǎn)到直線的距離的最大值為即可得高的最大值,即可得解.【詳解】(1)由消去參數(shù)得直線的普通方程為,由得,曲線的直角坐標(biāo)方程為;(2)曲線即,圓心到直線的距離,所以,又點(diǎn)到直線的距離的最大值為,所以面積的最大值為.【點(diǎn)睛】本題考查了參數(shù)方程、極坐標(biāo)方程和直角坐標(biāo)方程的互化,考查了直線與圓的位置關(guān)系,屬于中檔題.18、(1)證明見解析;(2)【解析】
(1)根據(jù)余弦定理,可得,利用//,可得//平面,然后利用線面平行的性質(zhì)定理,//,最后可得結(jié)果.(2)根據(jù)二面角平面角大小為,可知N為的中點(diǎn),然后利用建系,計(jì)算以及平面的一個(gè)法向量,利用向量的夾角公式,可得結(jié)果.【詳解】(1)不妨設(shè),則,在中,,則,因?yàn)?,所以,因?yàn)?/,且A、B、M、N四點(diǎn)共面,所以//平面.又平面平面,所以//.而,.(2)因?yàn)槠矫嫫矫?,且,所以平面,,因?yàn)?,所以平面,,因?yàn)?,平面與平面夾角為,所以,在中,易知N為的中點(diǎn),如圖,建立空間直角坐標(biāo)系,則,,,,,,,,設(shè)平面的一個(gè)法向量為,則由,令,得.設(shè)與平面所成角為,則.【點(diǎn)睛】本題考查線面平行的性質(zhì)定理以及線面角,熟練掌握利用建系的方法解決幾何問(wèn)題,將幾何問(wèn)題代數(shù)化,化繁為簡(jiǎn),屬中檔題.19、(1);(2),或,.【解析】
(1)利用正弦定理,轉(zhuǎn)化原式為,結(jié)合,可得,即得解;(2)由余弦定理,結(jié)合題中數(shù)據(jù),可得解【詳解】(1)由及正弦定理得.因?yàn)?,所以,代入上式并化?jiǎn)得.由于,所以.又,故.(2)因?yàn)?,,,由余弦定理得?所以.而,所以,為一元二次方程的兩根.所以,或,.【點(diǎn)睛】本題考查了正弦定理,余弦定理的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.20、(1);(2)或【解析】
(1)先由題意得出,可得出與的等量關(guān)系,然后將點(diǎn)的坐標(biāo)代入橢圓的方程,可求出與的值,從而得出橢圓的方程;(2)對(duì)直線的斜率是否存在進(jìn)行分類討論,當(dāng)直線的斜率不存在時(shí),可求出,然后進(jìn)行檢驗(yàn);當(dāng)直線的斜率存在時(shí),可設(shè)直線的方程為,設(shè)點(diǎn),先由直線與圓相切得出與之間的關(guān)系,再將直線的方程與橢圓的方程聯(lián)立,由韋達(dá)定理,利用弦長(zhǎng)公式并結(jié)合條件得出的值,從而求出直線的傾斜角.【詳解】(1)由題可知圓只能經(jīng)過(guò)橢圓的上下頂點(diǎn),所以橢圓焦距等于短軸長(zhǎng),可得,又點(diǎn)在橢圓上,所以,解得,即橢圓的方程為.(2)圓的方程為,當(dāng)直線不存在斜率時(shí),解得,不符合題意;當(dāng)直線存在斜率時(shí),設(shè)其方程為,因?yàn)橹本€與圓相切,所以,即.將直線與橢圓的方程聯(lián)立,得:,判別式,即,設(shè),則,所以,解得,所以直線的傾斜角為或.【點(diǎn)睛】求橢圓標(biāo)準(zhǔn)方程的方法一般為待定系數(shù)法,根據(jù)條件確定關(guān)于的方程組,解出,從而寫出橢圓的標(biāo)準(zhǔn)方程.解決直線與橢圓的位置關(guān)系的相關(guān)問(wèn)題,其常規(guī)思路是先把直線方程與橢圓方程聯(lián)立,消元、化簡(jiǎn),然后應(yīng)用根與系數(shù)的關(guān)系建立方程,解決相關(guān)問(wèn)題.涉及弦中點(diǎn)的問(wèn)題常常用“點(diǎn)差法”解決,往往會(huì)更簡(jiǎn)單.21、(1)(2)或【解析】
(1)根據(jù)橢圓定義求得,得橢圓方程;(2)設(shè),由得,應(yīng)用韋達(dá)定理得,代入已知條件可得,再由橢圓中弦長(zhǎng)公式求得弦長(zhǎng),原點(diǎn)到直線的距離,得三角形面積,從而可求得,得直線方程.【詳解】解:(1)據(jù)題意設(shè)橢圓的方程為則橢圓的標(biāo)準(zhǔn)方程為
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 公共事業(yè)銷售人員工作總結(jié)
- 陜西省渭南市富平縣2023-2024學(xué)年九年級(jí)上期末化學(xué)模擬試卷
- 禮品行業(yè)前臺(tái)工作總結(jié)
- 煙酒店居民樓小區(qū)保安工作要點(diǎn)
- IT行業(yè)程序員工作總結(jié)
- 科技研發(fā)合同三篇
- 2022年河南省鶴壁市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2024年江西省贛州市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2021年浙江省衢州市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 2021年浙江省金華市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 小學(xué)英語(yǔ)語(yǔ)法復(fù)習(xí)課件1
- (高清版)TDT 1037-2013 土地整治重大項(xiàng)目可行性研究報(bào)告編制規(guī)程
- 中國(guó)旅游集團(tuán)2024年校園招聘筆試參考題庫(kù)附帶答案詳解
- 導(dǎo)管室進(jìn)修匯報(bào)課件
- T-CEPPC 13-2023 電網(wǎng)區(qū)域電碳因子和電力碳排放量核算規(guī)范
- 《萬(wàn)以內(nèi)數(shù)的認(rèn)識(shí)》大單元整體設(shè)計(jì)
- 監(jiān)控系統(tǒng)調(diào)試檢驗(yàn)批質(zhì)量驗(yàn)收記錄(新表)
- 24.教育規(guī)劃綱要(2024-2024)
- 山東省棗莊市滕州市2023-2024學(xué)年八年級(jí)上學(xué)期期末數(shù)學(xué)試題(含答案)
- 我的家鄉(xiāng)隴南
- 2023-2024學(xué)年蘇州市八年級(jí)語(yǔ)文上學(xué)期期末考試卷附答案解析
評(píng)論
0/150
提交評(píng)論