




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省合肥市第四十八中學2024屆中考數(shù)學五模試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.我國古代數(shù)學著作《增刪算法統(tǒng)宗》記載”繩索量竿”問題:“一條竿子一條索,索比竿子長一托.折回索子卻量竿,卻比竿子短一托“其大意為:現(xiàn)有一根竿和一條繩索,用繩索去量竿,繩索比竿長5尺;如果將繩索對半折后再去量竿,就比竿短5尺.設(shè)繩索長x尺,竿長y尺,則符合題意的方程組是()A. B. C. D.2.當x=1時,代數(shù)式x3+x+m的值是7,則當x=﹣1時,這個代數(shù)式的值是()A.7 B.3 C.1 D.﹣73.如圖,點C是直線AB,DE之間的一點,∠ACD=90°,下列條件能使得AB∥DE的是()A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90°4.下列各數(shù)是不等式組的解是()A.0 B. C.2 D.35.(2016福建省莆田市)如圖,OP是∠AOB的平分線,點C,D分別在角的兩邊OA,OB上,添加下列條件,不能判定△POC≌△POD的選項是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD6.函數(shù)y=自變量x的取值范圍是()A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤37.如圖,已知第一象限內(nèi)的點A在反比例函數(shù)y=2x上,第二象限的點B在反比例函數(shù)y=kxA.﹣22 B.4 C.﹣4 D.228.在一個不透明的袋中裝有10個只有顏色不同的球,其中5個紅球、3個黃球和2個白球.從袋中任意摸出一個球,是白球的概率為(
)A. B. C. D.9.估計介于()A.0與1之間 B.1與2之間 C.2與3之間 D.3與4之間10.“保護水資源,節(jié)約用水”應(yīng)成為每個公民的自覺行為.下表是某個小區(qū)隨機抽查到的10戶家庭的月用水情況,則下列關(guān)于這10戶家庭的月用水量說法錯誤的是()月用水量(噸)4569戶數(shù)(戶)3421A.中位數(shù)是5噸 B.眾數(shù)是5噸 C.極差是3噸 D.平均數(shù)是5.3噸11.如圖,在四邊形ABCD中,如果∠ADC=∠BAC,那么下列條件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分線 C.AC2=BC?CD D.12.改革開放40年以來,城鄉(xiāng)居民生活水平持續(xù)快速提升,居民教育、文化和娛樂消費支出持續(xù)增長,已經(jīng)成為居民各項消費支出中僅次于居住、食品煙酒、交通通信后的第四大消費支出,如圖為北京市統(tǒng)計局發(fā)布的2017年和2018年我市居民人均教育、文化和娛樂消費支出的折線圖.說明:在統(tǒng)計學中,同比是指本期統(tǒng)計數(shù)據(jù)與上一年同期統(tǒng)計數(shù)據(jù)相比較,例如2018年第二季度與2017年第二季度相比較;環(huán)比是指本期統(tǒng)計數(shù)據(jù)與上期統(tǒng)計數(shù)據(jù)相比較,例如2018年第二季度與2018年第一季度相比較.根據(jù)上述信息,下列結(jié)論中錯誤的是()A.2017年第二季度環(huán)比有所提高B.2017年第三季度環(huán)比有所提高C.2018年第一季度同比有所提高D.2018年第四季度同比有所提高二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,邊長為4的正方形ABCD內(nèi)接于⊙O,點E是弧AB上的一動點(不與點A、B重合),點F是弧BC上的一點,連接OE,OF,分別與交AB,BC于點G,H,且∠EOF=90°,連接GH,有下列結(jié)論:①弧AE=弧BF;②△OGH是等腰直角三角形;③四邊形OGBH的面積隨著點E位置的變化而變化;④△GBH周長的最小值為4+2.其中正確的是_____.(把你認為正確結(jié)論的序號都填上)14.一個正多邊形的一個外角為30°,則它的內(nèi)角和為_____.15.如圖,點E在正方形ABCD的外部,∠DCE=∠DEC,連接AE交CD于點F,∠CDE的平分線交EF于點G,AE=2DG.若BC=8,則AF=_____.16.如圖,AC是以AB為直徑的⊙O的弦,點D是⊙O上的一點,過點D作⊙O的切線交直線AC于點E,AD平分∠BAE,若AB=10,DE=3,則AE的長為_____.17.(2016遼寧省沈陽市)如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DN,ME,DN與ME相交于點O.若△OMN是直角三角形,則DO的長是______.18.如圖,在平面直角坐標系中,△的頂點、在坐標軸上,點的坐標是(2,2).將△ABC沿軸向左平移得到△A1B1C1,點落在函數(shù)y=-.如果此時四邊形的面積等于,那么點的坐標是________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)y=mx與y=n(1)當m=1,n=20時.①若點P的縱坐標為2,求直線AB的函數(shù)表達式.②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關(guān)系;若不能,試說明理由.20.(6分)如圖,已知三角形ABC的邊AB是0的切線,切點為B.AC經(jīng)過圓心0并與圓相交于點D,C,過C作直線CE丄AB,交AB的延長線于點E,(1)求證:CB平分∠ACE;(2)若BE=3,CE=4,求O的半徑.21.(6分)某商場同時購進甲、乙兩種商品共100件,其進價和售價如下表:商品名稱甲乙進價(元/件)4090售價(元/件)60120設(shè)其中甲種商品購進x件,商場售完這100件商品的總利潤為y元.寫出y關(guān)于x的函數(shù)關(guān)系式;該商場計劃最多投入8000元用于購買這兩種商品,①至少要購進多少件甲商品?②若銷售完這些商品,則商場可獲得的最大利潤是多少元?22.(8分)在“一帶一路”戰(zhàn)略的影響下,某茶葉經(jīng)銷商準備把“茶路”融入“絲路”,經(jīng)計算,他銷售10kgA級別和20kgB級別茶葉的利潤為4000元,銷售20kgA級別和10kgB級別茶葉的利潤為3500元.(1)求每千克A級別茶葉和B級別茶葉的銷售利潤;(2)若該經(jīng)銷商一次購進兩種級別的茶葉共200kg用于出口,其中B級別茶葉的進貨量不超過A級別茶葉的2倍,請你幫該經(jīng)銷商設(shè)計一種進貨方案使銷售總利潤最大,并求出總利潤的最大值.23.(8分)某街道需要鋪設(shè)管線的總長為9000,計劃由甲隊施工,每天完成150.工作一段時間后,因為天氣原因,想要40天完工,所以增加了乙隊.如圖表示剩余管線的長度與甲隊工作時間(天)之間的函數(shù)關(guān)系圖象.(1)直接寫出點的坐標;(2)求線段所對應(yīng)的函數(shù)解析式,并寫出自變量的取值范圍;(3)直接寫出乙隊工作25天后剩余管線的長度.24.(10分)隨著移動計算技術(shù)和無線網(wǎng)絡(luò)的快速發(fā)展,移動學習方式越來越引起人們的關(guān)注,某校計劃將這種學習方式應(yīng)用到教育學中,從全校1500名學生中隨機抽取了部分學生,對其家庭中擁有的移動設(shè)備的情況進行調(diào)查,并繪制出如下的統(tǒng)計圖①和圖②,根據(jù)相關(guān)信息,解答下列問題:本次接受隨機抽樣調(diào)查的學生人數(shù)為,圖①中m的值為;求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);根據(jù)樣本數(shù)據(jù),估計該校1500名學生家庭中擁有3臺移動設(shè)備的學生人數(shù).25.(10分)已知:△ABC在直角坐標平面內(nèi),三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是;(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是;(3)△A2B2C2的面積是平方單位.26.(12分)如圖,將矩形ABCD沿對角線AC翻折,點B落在點F處,F(xiàn)C交AD于E.求證:△AFE≌△CDF;若AB=4,BC=8,求圖中陰影部分的面積.27.(12分)某調(diào)查小組采用簡單隨機抽樣方法,對某市部分中小學生一天中陽光體育運動時間進行了抽樣調(diào)查,并把所得數(shù)據(jù)整理后繪制成如下的統(tǒng)計圖:(1)該調(diào)查小組抽取的樣本容量是多少?(2)求樣本學生中陽光體育運動時間為1.5小時的人數(shù),并補全占頻數(shù)分布直方圖;(3)請估計該市中小學生一天中陽光體育運動的平均時間.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解題分析】
設(shè)索長為x尺,竿子長為y尺,根據(jù)“索比竿子長一托,折回索子卻量竿,卻比竿子短一托”,即可得出關(guān)于x、y的二元一次方程組.【題目詳解】設(shè)索長為x尺,竿子長為y尺,根據(jù)題意得:.故選A.【題目點撥】本題考查了二元一次方程組的應(yīng)用,找準等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.2、B【解題分析】
因為當x=1時,代數(shù)式的值是7,所以1+1+m=7,所以m=5,當x=-1時,=-1-1+5=3,故選B.3、B【解題分析】
延長AC交DE于點F,根據(jù)所給條件如果能推出∠α=∠1,則能使得AB∥DE,否則不能使得AB∥DE;【題目詳解】延長AC交DE于點F.A.∵∠α+∠β=180°,∠β=∠1+90°,∴∠α=90°-∠1,即∠α≠∠1,∴不能使得AB∥DE;B.∵∠β﹣∠α=90°,∠β=∠1+90°,∴∠α=∠1,∴能使得AB∥DE;C.∵∠β=3∠α,∠β=∠1+90°,∴3∠α=90°+∠1,即∠α≠∠1,∴不能使得AB∥DE;D.∵∠α+∠β=90°,∠β=∠1+90°,∴∠α=-∠1,即∠α≠∠1,∴不能使得AB∥DE;故選B.【題目點撥】本題考查了平行線的判定方法:①兩同位角相等,兩直線平行;
②內(nèi)錯角相等,兩直線平行;③同旁內(nèi)角互補,兩直線平行;④平行于同一直線的兩條直線互相平行;同一平面內(nèi),垂直于同一直線的兩條直線互相平行.4、D【解題分析】
求出不等式組的解集,判斷即可.【題目詳解】,由①得:x>-1,由②得:x>2,則不等式組的解集為x>2,即3是不等式組的解,故選D.【題目點撥】此題考查了解一元一次不等式組,熟練掌握運算法則是解本題的關(guān)鍵.5、D【解題分析】試題分析:對于A,由PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根據(jù)AAS判定定理可以判定△POC≌△POD;對于BOC=OD,根據(jù)SAS判定定理可以判定△POC≌△POD;對于C,∠OPC=∠OPD,根據(jù)ASA判定定理可以判定△POC≌△POD;,對于D,PC=PD,無法判定△POC≌△POD,故選D.考點:角平分線的性質(zhì);全等三角形的判定.6、B【解題分析】由題意得,x-1≥0且x-3≠0,∴x≥1且x≠3.故選B.7、C【解題分析】試題分析:作AC⊥x軸于點C,作BD⊥x軸于點D.則∠BDO=∠ACO=90°,則∠BOD+∠OBD=90°,∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴SΔOBDSΔAOC又∵S△AOC=12×2=1,∴S△OBD故選C.考點:1.相似三角形的判定與性質(zhì);2.反比例函數(shù)圖象上點的坐標特征.8、D【解題分析】
一個不透明的袋中裝有10個只有顏色不同的球,其中5個紅球、3個黃球和2個白球.從袋中任意摸出一個球,共有10種等可能的結(jié)果,其中摸出白球的所有等可能結(jié)果共有2種,根據(jù)概率公式即可得出答案.【題目詳解】根據(jù)題意:從袋中任意摸出一個球,是白球的概率為==.故答案為D【題目點撥】此題主要考查了概率的求法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.9、C【解題分析】
解:∵,∴,即∴估計在2~3之間故選C.【題目點撥】本題考查估計無理數(shù)的大?。?0、C【解題分析】
根據(jù)中位數(shù)、眾數(shù)、極差和平均數(shù)的概念,對選項一一分析,即可選擇正確答案.【題目詳解】解:A、中位數(shù)=(5+5)÷2=5(噸),正確,故選項錯誤;B、數(shù)據(jù)5噸出現(xiàn)4次,次數(shù)最多,所以5噸是眾數(shù),正確,故選項錯誤;C、極差為9﹣4=5(噸),錯誤,故選項正確;D、平均數(shù)=(4×3+5×4+6×2+9×1)÷10=5.3,正確,故選項錯誤.故選:C.【題目點撥】此題主要考查了平均數(shù)、中位數(shù)、眾數(shù)和極差的概念.要掌握這些基本概念才能熟練解題.11、C【解題分析】
結(jié)合圖形,逐項進行分析即可.【題目詳解】在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需滿足的條件有:①∠DAC=∠ABC或AC是∠BCD的平分線;②,故選C.【題目點撥】本題考查了相似三角形的條件,熟練掌握相似三角形的判定方法是解題的關(guān)鍵.12、C【解題分析】
根據(jù)環(huán)比和同比的比較方法,驗證每一個選項即可.【題目詳解】2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正確;2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正確;2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C錯誤;2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D正確;故選C.【題目點撥】本題考查折線統(tǒng)計圖,同比和環(huán)比的意義;能夠從統(tǒng)計圖中獲取數(shù)據(jù),按要求對比數(shù)據(jù)是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、①②④【解題分析】
①根據(jù)ASA可證△BOE≌△COF,根據(jù)全等三角形的性質(zhì)得到BE=CF,根據(jù)等弦對等弧得到,可以判斷①;
②根據(jù)SAS可證△BOG≌△COH,根據(jù)全等三角形的性質(zhì)得到∠GOH=90°,OG=OH,根據(jù)等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判斷②;
③通過證明△HOM≌△GON,可得四邊形OGBH的面積始終等于正方形ONBM的面積,可以判斷③;
④根據(jù)△BOG≌△COH可知BG=CH,則BG+BH=BC=4,設(shè)BG=x,則BH=4-x,根據(jù)勾股定理得到GH==,可以求得其最小值,可以判斷④.【題目詳解】解:①如圖所示,
∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,
∴∠BOE=∠COF,
在△BOE與△COF中,,
∴△BOE≌△COF,
∴BE=CF,
∴,①正確;
②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,
∴△BOG≌△COH;
∴OG=OH,∵∠GOH=90°,
∴△OGH是等腰直角三角形,②正確.③如圖所示,
∵△HOM≌△GON,
∴四邊形OGBH的面積始終等于正方形ONBM的面積,③錯誤;
④∵△BOG≌△COH,
∴BG=CH,
∴BG+BH=BC=4,
設(shè)BG=x,則BH=4-x,
則GH==,
∴其最小值為4+2,④正確.
故答案為:①②④【題目點撥】考查了圓的綜合題,關(guān)鍵是熟練掌握全等三角形的判定和性質(zhì),等弦對等弧,等腰直角三角形的判定,勾股定理,面積的計算,綜合性較強.14、1800°【解題分析】試題分析:這個正多邊形的邊數(shù)為=12,所以這個正多邊形的內(nèi)角和為(12﹣2)×180°=1800°.故答案為1800°.考點:多邊形內(nèi)角與外角.15、【解題分析】
如圖作DH⊥AE于H,連接CG.設(shè)DG=x,∵∠DCE=∠DEC,∴DC=DE,∵四邊形ABCD是正方形,∴AD=DC,∠ADF=90°,∴DA=DE,∵DH⊥AE,∴AH=HE=DG,在△GDC與△GDE中,,∴△GDC≌△GDE(SAS),∴GC=GE,∠DEG=∠DCG=∠DAF,∵∠AFD=∠CFG,∴∠ADF=∠CGF=90°,∴2∠GDE+2∠DEG=90°,∴∠GDE+∠DEG=45°,∴∠DGH=45°,在Rt△ADH中,AD=8,AH=x,DH=x,∴82=x2+(x)2,解得:x=,∵△ADH∽△AFD,∴,∴AF==4.故答案為4.16、1或9【解題分析】(1)點E在AC的延長線上時,過點O作OFAC交AC于點F,如圖所示∵OD=OA,∴∠OAD=∠ODA,∵AD平分∠BAE,∴∠OAD=∠ODA=∠DAC,∴OD//AE,∵DE是圓的切線,∴DE⊥OD,∴∠ODE=∠E=90o,∴四邊形ODEF是矩形,∴OF=DE,EF=OD=5,又∵OF⊥AC,∴AF=,∴AE=AF+EF=5+4=9.(2)當點E在CA的線上時,過點O作OFAC交AC于點F,如圖所示同(1)可得:EF=OD=5,OF=DE=3,在直角三角形AOF中,AF=,∴AE=EF-AF=5-4=1.17、或.【解題分析】由圖可知,在△OMN中,∠OMN的度數(shù)是一個定值,且∠OMN不為直角.故當∠ONM=90°或∠MON=90°時,△OMN是直角三角形.因此,本題需要按以下兩種情況分別求解.(1)當∠ONM=90°時,則DN⊥BC.過點E作EF⊥BC,垂足為F.(如圖)∵在Rt△ABC中,∠A=90°,AB=AC,∴∠C=45°,∵BC=20,∴在Rt△ABC中,,∵DE是△ABC的中位線,∴,∴在Rt△CFE中,,.∵BM=3,BC=20,F(xiàn)C=5,∴MF=BC-BM-FC=20-3-5=12.∵EF=5,MF=12,∴在Rt△MFE中,,∵DE是△ABC的中位線,BC=20,∴,DE∥BC,∴∠DEM=∠EMF,即∠DEO=∠EMF,∴,∴在Rt△ODE中,.(2)當∠MON=90°時,則DN⊥ME.過點E作EF⊥BC,垂足為F.(如圖)∵EF=5,MF=12,∴在Rt△MFE中,,∴在Rt△MFE中,,∵∠DEO=∠EMF,∴,∵DE=10,∴在Rt△DOE中,.綜上所述,DO的長是或.故本題應(yīng)填寫:或.點睛:在解決本題的過程中,難點在于對直角三角形中直角的分類討論;關(guān)鍵點是通過等角代換將一個在原直角三角形中不易求得的三角函數(shù)值轉(zhuǎn)換到一個容易求解的直角三角形中進行求解.另外,本題也可以用相似三角形的方法進行求解,不過利用銳角三角函數(shù)相對簡便.18、(-5,)【解題分析】分析:依據(jù)點B的坐標是(2,2),BB2∥AA2,可得點B2的縱坐標為2,再根據(jù)點B2落在函數(shù)y=﹣的圖象上,即可得到BB2=AA2=5=CC2,依據(jù)四邊形AA2C2C的面積等于,可得OC=,進而得到點C2的坐標是(﹣5,).詳解:如圖,∵點B的坐標是(2,2),BB2∥AA2,∴點B2的縱坐標為2.又∵點B2落在函數(shù)y=﹣的圖象上,∴當y=2時,x=﹣3,∴BB2=AA2=5=CC2.又∵四邊形AA2C2C的面積等于,∴AA2×OC=,∴OC=,∴點C2的坐標是(﹣5,).故答案為(﹣5,).點睛:本題主要考查了反比例函數(shù)的綜合題的知識,解答本題的關(guān)鍵是熟練掌握反比例函數(shù)的性質(zhì)以及平移的性質(zhì).在平面直角坐標系內(nèi),把一個圖形各個點的橫坐標都加上(或減去)一個整數(shù)a,相應(yīng)的新圖形就是把原圖形向右(或向左)平移a個單位長度.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)①直線AB的解析式為y=﹣12【解題分析】分析:(1)①先確定出點A,B坐標,再利用待定系數(shù)法即可得出結(jié)論;②先確定出點D坐標,進而確定出點P坐標,進而求出PA,PC,即可得出結(jié)論;(2)先確定出B(1,m4),進而得出A(1-t,m4+t),即:(1-t)(m4詳解:(1)①如圖1,∵m=1,∴反比例函數(shù)為y=4x∴B(1,1),當y=2時,∴2=4x∴x=2,∴A(2,2),設(shè)直線AB的解析式為y=kx+b,∴2k+b=∴k=∴直線AB的解析式為y=-12②四邊形ABCD是菱形,理由如下:如圖2,由①知,B(1,1),∵BD∥y軸,∴D(1,5),∵點P是線段BD的中點,∴P(1,3),當y=3時,由y=4x得,x=4由y=20x得,x=20∴PA=1-43=83,PC=203∴PA=PC,∵PB=PD,∴四邊形ABCD為平行四邊形,∵BD⊥AC,∴四邊形ABCD是菱形;(2)四邊形ABCD能是正方形,理由:當四邊形ABCD是正方形,∴PA=PB=PC=PD,(設(shè)為t,t≠0),當x=1時,y=mx=m∴B(1,m4∴A(1-t,m4∴(1-t)(m4∴t=1-m4∴點D的縱坐標為m4+2t=m4+2(1-m4∴D(1,8-m4∴1(8-m4∴m+n=2.點睛:此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,平行四邊形的判定,菱形的判定和性質(zhì),正方形的性質(zhì),判斷出四邊形ABCD是平行四邊形是解本題的關(guān)鍵.20、(1)證明見解析;(2).【解題分析】試題分析:(1)證明:如圖1,連接OB,由AB是⊙0的切線,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根據(jù)等腰三角形的性質(zhì)得到∠1=∠2,通過等量代換得到結(jié)果.(2)如圖2,連接BD通過△DBC∽△CBE,得到比例式,列方程可得結(jié)果.(1)證明:如圖1,連接OB,∵AB是⊙0的切線,∴OB⊥AB,∵CE丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2,∴∠2=∠3,∴CB平分∠ACE;(2)如圖2,連接BD,∵CE丄AB,∴∠E=90°,∴BC===5,∵CD是⊙O的直徑,∴∠DBC=90°,∴∠E=∠DBC,∴△DBC∽△CBE,∴,∴BC2=CD?CE,∴CD==,∴OC==,∴⊙O的半徑=.考點:切線的性質(zhì).21、(Ⅰ);(Ⅱ)①至少要購進20件甲商品;②售完這些商品,則商場可獲得的最大利潤是2800元.【解題分析】
(Ⅰ)根據(jù)總利潤=(甲的售價-甲的進價)×甲的進貨數(shù)量+(乙的售價-乙的進價)×乙的進貨數(shù)量列關(guān)系式并化簡即可得答案;(Ⅱ)①根據(jù)總成本最多投入8000元列不等式即可求出x的范圍,即可得答案;②根據(jù)一次函數(shù)的增減性確定其最大值即可.【題目詳解】(Ⅰ)根據(jù)題意得:則y與x的函數(shù)關(guān)系式為.(Ⅱ),解得.∴至少要購進20件甲商品.,∵,∴y隨著x的增大而減小∴當時,有最大值,.∴若售完這些商品,則商場可獲得的最大利潤是2800元.【題目點撥】本題考查一次函數(shù)的實際應(yīng)用及一元一次不等式的應(yīng)用,熟練掌握一次函數(shù)的性質(zhì)是解題關(guān)鍵.22、(1)100元和150元;(2)購進A種級別的茶葉67kg,購進B種級別的茶葉133kg.銷售總利潤最大為26650元.【解題分析】試題分析:(1)設(shè)每千克A級別茶葉和B級別茶葉的銷售利潤分別為x元和y元;
(2)設(shè)購進A種級別的茶葉akg,購進B種級別的茶葉(200-a)kg.銷售總利潤為w元.構(gòu)建一次函數(shù),利用一次函數(shù)的性質(zhì)即可解決問題.試題解析:解:(1)設(shè)每千克A級別茶葉和B級別茶葉的銷售利潤分別為x元和y元.由題意,解得,答:每千克A級別茶葉和B級別茶葉的銷售利潤分別為100元和150元.(2)設(shè)購進A種級別的茶葉akg,購進B種級別的茶葉(200﹣a)kg.銷售總利潤為w元.由題意w=100a+150(200﹣a)=﹣50a+30000,∵﹣50<0,∴w隨x的增大而減小,∴當a取最小值,w有最大值,∵200﹣a≤2a,∴a≥,∴當a=67時,w最小=﹣50×67+30000=26650(元),此時200﹣67=133kg,答:購進A種級別的茶葉67kg,購進B種級別的茶葉133kg.銷售總利潤最大為26650元.點睛:本題考查一次函數(shù)的應(yīng)用、二元一次方程組、不等式等知識,解題的關(guān)鍵是理解題意,學會利用參數(shù)構(gòu)建一次函數(shù)或方程解決問題.23、(1)(10,7500)(2)直線BC的解析式為y=-250x+10000,自變量x的取值范圍為10≤x≤40.(3)1250米.【解題分析】
(1)由于前面10天由甲單獨完成,用總的長度減去已完成的長度即為剩余的長度,從而求出點B的坐標;(2)利用待定系數(shù)法求解即可;(3)已隊工作25天后,即甲隊工作了35天,故當x=35時,函數(shù)值即為所求.【題目詳解】(1)9000-150×10=7500.∴點B的坐標為(10,7500)(2)設(shè)直線BC的解析式為y=kx+b,依題意,得:解得:∴直線BC的解析式為y=-250x+10000,∵乙隊是10天之后加入,40天完成,∴自變量x的取值范圍為10≤x≤40.(3)依題意,當x=35時,y=-250×35+10000=1250.∴乙隊工作25天后剩余管線的長度是1250米.【題目點撥】本題考查了一次函數(shù)的應(yīng)用,理解題意觀察圖象得到有用信息是解題的關(guān)鍵.24、(Ⅰ)50、31;(Ⅱ)4;3;3.1;(Ⅲ)410人.【解題分析】
(Ⅰ)利用家庭中擁有1臺移動設(shè)備的人數(shù)除以其所占百分比即可得調(diào)查的學生人數(shù),將擁有4臺移動設(shè)備的人數(shù)除以總?cè)藬?shù)即可求得m的值;(Ⅱ)根據(jù)眾數(shù)、中位數(shù)、加權(quán)平均數(shù)的定義計算即可;(Ⅲ)將樣本中擁有3臺移動設(shè)備的學生人數(shù)所占比例乘以總?cè)藬?shù)1500即可求解.【題目詳解】解:(Ⅰ)本次接受隨機抽樣調(diào)查的學生人數(shù)為:=50(人),∵×100=31%,∴圖①中m的值為31.故答案為50、31;(Ⅱ)∵這組樣本數(shù)據(jù)中,4出現(xiàn)了16次,出現(xiàn)次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)為4;∵將這組數(shù)據(jù)從小到大排列,其中處于中間的兩個數(shù)均為3,有=3,∴這組數(shù)據(jù)的中位數(shù)是3;由條形統(tǒng)計圖可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《贈劉景文》和《山行》古詩的教學反思
- 《語文樂園七》教案
- 二手商品車買賣合同范本
- 《草莓》大班教案
- 農(nóng)村共同建房合同范例
- 廠房裝修安全合同范本
- pvc地板膠合同范本
- 叉車租車安全合同范本
- 《猜字謎》教學反思
- 農(nóng)產(chǎn)品平臺銷售合同范本
- 人教版四年級數(shù)學下冊《圖形的運動(二)》試題(含答案)
- 2024-2025學年五年級(下)信息科技教學計劃
- 《老年人權(quán)益保障法》
- 2025-2030年中國pcb行業(yè)競爭格局及未來投資趨勢分析報告新版
- 2025年年食堂工作總結(jié)和年工作計劃例文
- 船舶制造設(shè)施安全生產(chǎn)培訓
- 全國駕駛員考試(科目一)考試題庫下載1500道題(中英文對照版本)
- TSG 07-2019電梯安裝修理維護質(zhì)量保證手冊程序文件制度文件表單一整套
- 2025深圳勞動合同下載
- 標準和計量管理制度范文(2篇)
- 孕前口腔護理保健
評論
0/150
提交評論