版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省廣州市重點(diǎn)中學(xué)2024學(xué)年中考數(shù)學(xué)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,已知AB∥CD,DE⊥AC,垂足為E,∠A=120°,則∠D的度數(shù)為()A.30° B.60° C.50° D.40°2.如圖是一個正方體展開圖,把展開圖折疊成正方體后,“愛”字一面相對面上的字是()A.美 B.麗 C.泗 D.陽3.PM2.5是大氣壓中直徑小于或等于0.0000025m的顆粒物,將0.0000025用科學(xué)記數(shù)法表示為()A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5 D.2.5×10﹣64.對于下列調(diào)查:①對從某國進(jìn)口的香蕉進(jìn)行檢驗(yàn)檢疫;②審查某教科書稿;③中央電視臺“雞年春晚”收視率.其中適合抽樣調(diào)查的是()A.①②B.①③C.②③D.①②③5.如下圖所示,該幾何體的俯視圖是()A. B. C. D.6.要使分式有意義,則x的取值應(yīng)滿足()A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣27.如圖,△ABC中,AB=4,BC=6,∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點(diǎn)A′逆時針旋轉(zhuǎn)一定角度后,點(diǎn)B′恰好與點(diǎn)C重合,則平移的距離和旋轉(zhuǎn)角的度數(shù)分別為()A.4,30° B.2,60° C.1,30° D.3,60°8.如圖,在△ABC中,點(diǎn)D在AB邊上,DE∥BC,與邊AC交于點(diǎn)E,連結(jié)BE,記△ADE,△BCE的面積分別為S1,S2,()A.若2AD>AB,則3S1>2S2 B.若2AD>AB,則3S1<2S2C.若2AD<AB,則3S1>2S2 D.若2AD<AB,則3S1<2S29.如圖,,,則的大小是A. B. C. D.10.如圖是某個幾何體的三視圖,該幾何體是()A.圓錐 B.四棱錐 C.圓柱 D.四棱柱二、填空題(共7小題,每小題3分,滿分21分)11.小球在如圖所示的地板上自由地滾動,并隨機(jī)地停留在某塊方磚上,那么小球最終停留在黑色區(qū)域的概率是_____________________.12.如圖,在△ABC中,AB=AC=2,∠BAC=120°,點(diǎn)D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長為________.13.如圖,矩形ABCD中,AD=5,∠CAB=30°,點(diǎn)P是線段AC上的動點(diǎn),點(diǎn)Q是線段CD上的動點(diǎn),則AQ+QP的最小值是___________.14.如圖,中,,,,,平分,與相交于點(diǎn),則的長等于_____.15.分解因式:x2y﹣xy2=_____.16.股市規(guī)定:股票每天的漲、跌幅均不超過10%,即當(dāng)漲了原價的10%后,便不能再漲,叫做漲停;當(dāng)?shù)嗽瓋r的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后兩天時間又漲回到原價,若這兩天此股票股價的平均增長率為x,則x滿足的方程是_____.17.如圖,已知⊙O1與⊙O2相交于A、B兩點(diǎn),延長連心線O1O2交⊙O2于點(diǎn)P,聯(lián)結(jié)PA、PB,若∠APB=60°,AP=6,那么⊙O2的半徑等于________.三、解答題(共7小題,滿分69分)18.(10分)解不等式組并寫出它的所有整數(shù)解.19.(5分)計(jì)算:sin30°﹣+(π﹣4)0+|﹣|.20.(8分)如圖1,已知∠DAC=90°,△ABC是等邊三角形,點(diǎn)P為射線AD上任意一點(diǎn)(點(diǎn)P與點(diǎn)A不重合),連結(jié)CP,將線段CP繞點(diǎn)C順時針旋轉(zhuǎn)60°得到線段CQ,連結(jié)QB并延長交直線AD于點(diǎn)E.(1)如圖1,猜想∠QEP=°;(2)如圖2,3,若當(dāng)∠DAC是銳角或鈍角時,其它條件不變,猜想∠QEP的度數(shù),選取一種情況加以證明;(3)如圖3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的長.21.(10分)如圖,在□ABCD中,對角線AC、BD相交于點(diǎn)O,點(diǎn)E在BD的延長線上,且△EAC是等邊三角形.(1)求證:四邊形ABCD是菱形.(2)若AC=8,AB=5,求ED的長.22.(10分)如圖,在三角形ABC中,AB=6,AC=BC=5,以BC為直徑作⊙O交AB于點(diǎn)D,交AC于點(diǎn)G,直線DF是⊙O的切線,D為切點(diǎn),交CB的延長線于點(diǎn)E.(1)求證:DF⊥AC;(2)求tan∠E的值.23.(12分)求拋物線y=x2+x﹣2與x軸的交點(diǎn)坐標(biāo).24.(14分)先化簡,再求值:(1+)÷,其中x=+1.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解題分析】分析:根據(jù)平行線的性質(zhì)求出∠C,求出∠DEC的度數(shù),根據(jù)三角形內(nèi)角和定理求出∠D的度數(shù)即可.詳解:∵AB∥CD,∴∠A+∠C=180°.∵∠A=120°,∴∠C=60°.∵DE⊥AC,∴∠DEC=90°,∴∠D=180°﹣∠C﹣∠DEC=30°.故選A.點(diǎn)睛:本題考查了平行線的性質(zhì)和三角形內(nèi)角和定理的應(yīng)用,能根據(jù)平行線的性質(zhì)求出∠C的度數(shù)是解答此題的關(guān)鍵.2、D【解題分析】
正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據(jù)這一特點(diǎn)作答.【題目詳解】解:正方體的表面展開圖,相對的面之間一定相隔一個正方形,“愛”字一面相對面上的字是“陽”;故本題答案為:D.【題目點(diǎn)撥】本題主要考查了正方體相對兩個面上的文字,注意正方體的空間圖形是解題的關(guān)鍵.3、D【解題分析】
根據(jù)科學(xué)記數(shù)法的定義,科學(xué)記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.在確定n的值時,看該數(shù)是大于或等于1還是小于1.當(dāng)該數(shù)大于或等于1時,n為它的整數(shù)位數(shù)減1;當(dāng)該數(shù)小于1時,-n為它第一個有效數(shù)字前0的個數(shù)(含小數(shù)點(diǎn)前的1個0).【題目詳解】解:0.0000025第一個有效數(shù)字前有6個0(含小數(shù)點(diǎn)前的1個0),從而.故選D.4、B【解題分析】
根據(jù)普查得到的調(diào)查結(jié)果比較準(zhǔn)確,但所費(fèi)人力、物力和時間較多,而抽樣調(diào)查得到的調(diào)查結(jié)果比較近似解答.【題目詳解】①對從某國進(jìn)口的香蕉進(jìn)行檢驗(yàn)檢疫適合抽樣調(diào)查;②審查某教科書稿適合全面調(diào)查;③中央電視臺“雞年春晚”收視率適合抽樣調(diào)查.故選B.【題目點(diǎn)撥】本題考查了抽樣調(diào)查和全面調(diào)查的區(qū)別,選擇普查還是抽樣調(diào)查要根據(jù)所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調(diào)查、無法進(jìn)行普查、普查的意義或價值不大,應(yīng)選擇抽樣調(diào)查,對于精確度要求高的調(diào)查,事關(guān)重大的調(diào)查往往選用普查.5、B【解題分析】
根據(jù)俯視圖是從上面看到的圖形解答即可.【題目詳解】從上面看是三個長方形,故B是該幾何體的俯視圖.故選B.【題目點(diǎn)撥】本題考查三視圖的知識,解決此類圖的關(guān)鍵是由三視圖得到相應(yīng)的立體圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實(shí)線,被遮擋的線畫虛線.6、D【解題分析】試題分析:∵分式有意義,∴x+1≠0,∴x≠﹣1,即x的取值應(yīng)滿足:x≠﹣1.故選D.考點(diǎn):分式有意義的條件.7、B【解題分析】試題分析:∵∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點(diǎn)A′逆時針旋轉(zhuǎn)一定角度后,點(diǎn)B′恰好與點(diǎn)C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等邊三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距離和旋轉(zhuǎn)角的度數(shù)分別為:2,60°故選B.考點(diǎn):1、平移的性質(zhì);2、旋轉(zhuǎn)的性質(zhì);3、等邊三角形的判定8、D【解題分析】
根據(jù)題意判定△ADE∽△ABC,由相似三角形的面積之比等于相似比的平方解答.【題目詳解】∵如圖,在△ABC中,DE∥BC,∴△ADE∽△ABC,∴,∴若1AD>AB,即時,,此時3S1>S1+S△BDE,而S1+S△BDE<1S1.但是不能確定3S1與1S1的大小,故選項(xiàng)A不符合題意,選項(xiàng)B不符合題意.若1AD<AB,即時,,此時3S1<S1+S△BDE<1S1,故選項(xiàng)C不符合題意,選項(xiàng)D符合題意.故選D.【題目點(diǎn)撥】考查了相似三角形的判定與性質(zhì),三角形相似的判定一直是中考考查的熱點(diǎn)之一,在判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形.9、D【解題分析】
依據(jù),即可得到,再根據(jù),即可得到.【題目詳解】解:如圖,,,又,,故選:D.【題目點(diǎn)撥】本題主要考查了平行線的性質(zhì),兩直線平行,同位角相等.10、B【解題分析】
由主視圖和左視圖確定是柱體,錐體還是球體,再由俯視圖確定具體形狀【題目詳解】解:根據(jù)主視圖和左視圖為矩形判斷出是柱體,根據(jù)俯視圖是長方形可判斷出這個幾何體應(yīng)該是四棱柱.故選B.【題目點(diǎn)撥】本題考查了由三視圖找到幾何體圖形,屬于簡單題,熟悉三視圖概念是解題關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、2【解題分析】試題分析:根據(jù)題意和圖示,可知所有的等可能性為18種,然后可知落在黑色區(qū)域的可能有4種,因此可求得小球停留在黑色區(qū)域的概率為:41812、1-1.【解題分析】
將△ABD繞點(diǎn)A逆時針旋轉(zhuǎn)120°得到△ACF,取CF的中點(diǎn)G,連接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=10°,根據(jù)旋轉(zhuǎn)的性質(zhì)可得出∠ECG=60°,結(jié)合CF=BD=2CE可得出△CEG為等邊三角形,進(jìn)而得出△CEF為直角三角形,通過解直角三角形求出BC的長度以及證明全等找出DE=FE,設(shè)EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此題得解.【題目詳解】將△ABD繞點(diǎn)A逆時針旋轉(zhuǎn)120°得到△ACF,取CF的中點(diǎn)G,連接EF、EG,如圖所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=10°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG為等邊三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=10°,∴△CEF為直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.設(shè)EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6-1x=x,x=1-,∴DE=x=1-1.故答案為:1-1.【題目點(diǎn)撥】本題考查了全等三角形的判定與性質(zhì)、勾股定理以及旋轉(zhuǎn)的性質(zhì),通過勾股定理找出方程是解題的關(guān)鍵.13、5【解題分析】
作點(diǎn)A關(guān)于直線CD的對稱點(diǎn)E,作EP⊥AC于P,交CD于點(diǎn)Q,此時QA+QP最短,由QA+QP=QE+PQ=PE可知,求出PE即可解決問題.【題目詳解】解:作點(diǎn)A關(guān)于直線CD的對稱點(diǎn)E,作EP⊥AC于P,交CD于點(diǎn)Q.∵四邊形ABCD是矩形,∴∠ADC=90°,∴DQ⊥AE,∵DE=AD,∴QE=QA,∴QA+QP=QE+QP=EP,∴此時QA+QP最短(垂線段最短),∵∠CAB=30°,∴∠DAC=60°,在Rt△APE中,∵∠APE=90°,AE=2AD=10,∴EP=AE?sin60°=10×=5.故答案為5.【題目點(diǎn)撥】本題考查矩形的性質(zhì)、最短問題、銳角三角函數(shù)等知識,解題的關(guān)鍵是利用對稱以及垂線段最短找到點(diǎn)P、Q的位置,屬于中考??碱}型.14、3【解題分析】
如圖,延長CE、DE,分別交AB于G、H,由∠BAD=∠ADE=60°可得三角形ADH是等邊三角形,根據(jù)等腰直角三角形的性質(zhì)可知CG⊥AB,可求出AG的長,進(jìn)而可得GH的長,根據(jù)含30°角的直角三角形的性質(zhì)可求出EH的長,根據(jù)DE=DH-EH即可得答案.【題目詳解】如圖,延長CE、DE,分別交AB于G、H,∵∠BAD=∠ADE=60°,∴△ADH是等邊三角形,∴DH=AD=AH=5,∠DHA=60°,∵AC=BC,CE平分∠ACB,∠ACB=90°,∴AB==8,AG=AB=4,CG⊥AB,∴GH=AH=AG=5-4=1,∵∠DHA=60°,∴∠GEH=30°,∴EH=2GH=2∴DE=DH-EH=5=2=3.故答案為:3【題目點(diǎn)撥】本題考查等邊三角形的判定及性質(zhì)、等腰直角三角形的性質(zhì)及含30°角的直角三角形的性質(zhì),熟記30°角所對的直角邊等于斜邊的一半的性質(zhì)并正確作出輔助線是解題關(guān)鍵.15、xy(x﹣y)【解題分析】原式=xy(x﹣y).故答案為xy(x﹣y).16、.【解題分析】
股票一次跌停就跌到原來價格的90%,再從90%的基礎(chǔ)上漲到原來的價格,且漲幅只能≤10%,設(shè)這兩天此股票股價的平均增長率為x,每天相對于前一天就上漲到1+x,由此列出方程解答即可.【題目詳解】設(shè)這兩天此股票股價的平均增長率為x,由題意得(1﹣10%)(1+x)2=1.故答案為:(1﹣10%)(1+x)2=1.【題目點(diǎn)撥】本題主要考查了由實(shí)際問題抽象出一元二次方程,關(guān)鍵是掌握平均變化率的方法,若設(shè)變化前的量為,變化后的量為,平均變化率為,則經(jīng)過兩次變化后的數(shù)量關(guān)系為17、2【解題分析】
由題意得出△ABP為等邊三角形,在Rt△ACO2中,AO2=即可.【題目詳解】由題意易知:PO1⊥AB,∵∠APB=60°∴△ABP為等邊三角形,AC=BC=3∴圓心角∠AO2O1=60°∴在Rt△ACO2中,AO2==2.故答案為2.【題目點(diǎn)撥】本題考查的知識點(diǎn)是圓的性質(zhì),解題的關(guān)鍵是熟練的掌握圓的性質(zhì).三、解答題(共7小題,滿分69分)18、不等式組的整數(shù)解有﹣1、0、1.【解題分析】
先解不等式組,求得不等式組的解集,再確定不等式組的整數(shù)解即可.【題目詳解】,解不等式①可得,x>-2;解不等式②可得,x≤1;∴不等式組的解集為:﹣2<x≤1,∴不等式組的整數(shù)解有﹣1、0、1.【題目點(diǎn)撥】本題考查了解一元一次不等式組,正確求出每一個不等式解集是基礎(chǔ),熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則求不等式組的解集是解答本題的關(guān)鍵.19、1.【解題分析】分析:原式利用特殊角角的三角函數(shù)值,平方根定義,零指數(shù)冪法則,以及絕對值的代數(shù)意義化簡,計(jì)算即可求出值.詳解:原式=﹣2+1+=1.點(diǎn)睛:本題考查了實(shí)數(shù)的運(yùn)算,熟練掌握運(yùn)算法則是解答本題的關(guān)鍵.20、(1)∠QEP=60°;(2)∠QEP=60°,證明詳見解析;(3)【解題分析】
(1)如圖1,先根據(jù)旋轉(zhuǎn)的性質(zhì)和等邊三角形的性質(zhì)得出∠PCA=∠QCB,進(jìn)而可利用SAS證明△CQB≌△CPA,進(jìn)而得∠CQB=∠CPA,再在△PEM和△CQM中利用三角形的內(nèi)角和定理即可求得∠QEP=∠QCP,從而完成猜想;(2)以∠DAC是銳角為例,如圖2,仿(1)的證明思路利用SAS證明△ACP≌△BCQ,可得∠APC=∠Q,進(jìn)一步即可證得結(jié)論;(3)仿(2)可證明△ACP≌△BCQ,于是AP=BQ,再求出AP的長即可,作CH⊥AD于H,如圖3,易證∠APC=30°,△ACH為等腰直角三角形,由AC=4可求得CH、PH的長,于是AP可得,問題即得解決.【題目詳解】解:(1)∠QEP=60°;證明:連接PQ,如圖1,由題意得:PC=CQ,且∠PCQ=60°,∵△ABC是等邊三角形,∴∠ACB=60°,∴∠PCA=∠QCB,則在△CPA和△CQB中,,∴△CQB≌△CPA(SAS),∴∠CQB=∠CPA,又因?yàn)椤鱌EM和△CQM中,∠EMP=∠CMQ,∴∠QEP=∠QCP=60°.故答案為60;(2)∠QEP=60°.以∠DAC是銳角為例.證明:如圖2,∵△ABC是等邊三角形,∴AC=BC,∠ACB=60°,∵線段CP繞點(diǎn)C順時針旋轉(zhuǎn)60°得到線段CQ,∴CP=CQ,∠PCQ=60°,∴∠ACB+∠BCP=∠BCP+∠PCQ,即∠ACP=∠BCQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴∠APC=∠Q,∵∠1=∠2,∴∠QEP=∠PCQ=60°;
(3)連結(jié)CQ,作CH⊥AD于H,如圖3,與(2)一樣可證明△ACP≌△BCQ,∴AP=BQ,∵∠DAC=135°,∠ACP=15°,∴∠APC=30°,∠CAH=45°,∴△ACH為等腰直角三角形,∴AH=CH=AC=×4=,在Rt△PHC中,PH=CH=,∴PA=PH?AH=-,∴BQ=?.【題目點(diǎn)撥】本題考查了等邊三角形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、全等三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)和有關(guān)計(jì)算、30°角的直角三角形的性質(zhì)等知識,涉及的知識點(diǎn)多、綜合性強(qiáng),靈活應(yīng)用全等三角形的判定和性質(zhì)、熟練掌握旋轉(zhuǎn)的性質(zhì)和相關(guān)圖形的性質(zhì)是解題的關(guān)鍵.21、(1)證明見解析(2)4-3【解題分析】試題分析:(1)根據(jù)等邊三角形的性質(zhì),可得EO⊥AC,即BD⊥AC,根據(jù)平行四邊形的對角線互相垂直可證菱形,(2)根據(jù)平行四邊形的對角線互相平分可得AO=CO,BO=DO,再根據(jù)△EAC是等邊三角形可以判定EO⊥AC,并求出EA的長度,然后在Rt△ABO中,利用勾股定理列式求出BO的長度,即DO的長度,在Rt△AOE中,根據(jù)勾股定理列式求出EO的長度,再根據(jù)ED=EO-DO計(jì)算即可得解.試題解析:(1)∵四邊形ABCD是平行四邊形,∴AO=CO,DO=BO,∵△EAC是等邊三角形,EO是AC邊上中線,∴EO⊥AC,即BD⊥AC,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《沈陽市房地產(chǎn)業(yè)可持續(xù)發(fā)展研究》
- 二零二五年度特種防護(hù)服裝研發(fā)與供應(yīng)合同3篇
- 學(xué)校品牌形象與教育質(zhì)量的關(guān)系研究
- 2024消防通風(fēng)工程節(jié)能改造與技術(shù)咨詢協(xié)議3篇
- 2024年高速公路指示合同3篇
- 2025年度石場承包環(huán)境監(jiān)測與治理合同3篇
- 2024版員工入職聘用合同協(xié)議書
- 2025年中國補(bǔ)鈣保健品市場發(fā)展前景分析及行業(yè)投資規(guī)劃建議報告
- 2025年度學(xué)校校園文化活動策劃與實(shí)施合同3篇
- 《LNG接收系統(tǒng)BOG再冷凝工藝優(yōu)化研究》
- 《皮膚病中成藥導(dǎo)引》課件
- 建筑公司2025年度工作總結(jié)和2025年工作安排計(jì)劃
- 2023-2024學(xué)年廣東省廣州市越秀區(qū)九年級(上)期末物理試卷(含答案)
- 太空軍事法律問題-洞察分析
- 2024年行政執(zhí)法人員資格考試必考知識題庫及答案(共250題)
- 電壓損失計(jì)算表
- 二零二四年風(fēng)力發(fā)電項(xiàng)目EPC總承包合同
- 汽車維修開發(fā)票協(xié)議書
- 旋挖買賣合同范例
- 文化傳媒企業(yè)資質(zhì)掛靠合作協(xié)議書
- 腦疝病人的觀察與護(hù)理
評論
0/150
提交評論