揚(yáng)州市梅嶺中學(xué)2024屆中考數(shù)學(xué)考前最后一卷含解析_第1頁
揚(yáng)州市梅嶺中學(xué)2024屆中考數(shù)學(xué)考前最后一卷含解析_第2頁
揚(yáng)州市梅嶺中學(xué)2024屆中考數(shù)學(xué)考前最后一卷含解析_第3頁
揚(yáng)州市梅嶺中學(xué)2024屆中考數(shù)學(xué)考前最后一卷含解析_第4頁
揚(yáng)州市梅嶺中學(xué)2024屆中考數(shù)學(xué)考前最后一卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

揚(yáng)州市梅嶺中學(xué)2024學(xué)年中考數(shù)學(xué)考前最后一卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.已知A、B兩地之間鐵路長為450千米,動車比火車每小時(shí)多行駛50千米,從A市到B市乘動車比乘火車少用40分鐘,設(shè)動車速度為每小時(shí)x千米,則可列方程為()A. B.C. D.2.將一根圓柱形的空心鋼管任意放置,它的主視圖不可能是()A. B. C. D.3.如圖1,在等邊△ABC中,D是BC的中點(diǎn),P為AB邊上的一個(gè)動點(diǎn),設(shè)AP=x,圖1中線段DP的長為y,若表示y與x的函數(shù)關(guān)系的圖象如圖2所示,則△ABC的面積為()A.4 B. C.12 D.4.下列各數(shù)中負(fù)數(shù)是()A.﹣(﹣2)B.﹣|﹣2|C.(﹣2)2D.﹣(﹣2)35.到三角形三個(gè)頂點(diǎn)的距離相等的點(diǎn)是三角形()的交點(diǎn).A.三個(gè)內(nèi)角平分線 B.三邊垂直平分線C.三條中線 D.三條高6.在下面四個(gè)幾何體中,從左面看、從上面看分別得到的平面圖形是長方形、圓,這個(gè)幾何體是()A. B. C. D.7.如圖,為測量一棵與地面垂直的樹OA的高度,在距離樹的底端30米的B處,測得樹頂A的仰角∠ABO為α,則樹OA的高度為()A.米 B.30sinα米 C.30tanα米 D.30cosα米8.如圖,在平行四邊形ABCD中,AB=4,BC=6,分別以A,C為圓心,以大于AC的長為半徑作弧,兩弧相交于M,N兩點(diǎn),作直線MN交AD于點(diǎn)E,則△CDE的周長是()A.7 B.10 C.11 D.129.左下圖是一些完全相同的小正方體搭成的幾何體的三視圖.這個(gè)幾何體只能是()A. B. C. D.10.甲、乙兩船從相距300km的A、B兩地同時(shí)出發(fā)相向而行,甲船從A地順流航行180km時(shí)與從B地逆流航行的乙船相遇,水流的速度為6km/h,若甲、乙兩船在靜水中的速度均為xkm/h,則求兩船在靜水中的速度可列方程為()A.= B.=C.= D.=11.若⊙O的半徑為5cm,OA=4cm,則點(diǎn)A與⊙O的位置關(guān)系是()A.點(diǎn)A在⊙O內(nèi) B.點(diǎn)A在⊙O上 C.點(diǎn)A在⊙O外 D.內(nèi)含12.據(jù)《關(guān)于“十三五”期間全面深入推進(jìn)教育信息化工作的指導(dǎo)意見》顯示,全國6000萬名師生已通過“網(wǎng)絡(luò)學(xué)習(xí)空間”探索網(wǎng)絡(luò)條件下的新型教學(xué)、學(xué)習(xí)與教研模式,教育公共服務(wù)平臺基本覆蓋全國學(xué)生、教職工等信息基礎(chǔ)數(shù)據(jù)庫,實(shí)施全國中小學(xué)教師信息技術(shù)應(yīng)用能力提升工程.則數(shù)字6000萬用科學(xué)記數(shù)法表示為()A.6×105 B.6×106 C.6×107 D.6×108二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.某菜農(nóng)搭建了一個(gè)橫截面為拋物線的大棚,尺寸如圖,若菜農(nóng)身高為1.8m,他在不彎腰的情況下,在棚內(nèi)的橫向活動范圍是__m.14.如圖,某景區(qū)的兩個(gè)景點(diǎn)A、B處于同一水平地面上、一架無人機(jī)在空中沿MN方向水平飛行進(jìn)行航拍作業(yè),MN與AB在同一鉛直平面內(nèi),當(dāng)無人機(jī)飛行至C處時(shí)、測得景點(diǎn)A的俯角為45°,景點(diǎn)B的俯角為30°,此時(shí)C到地面的距離CD為100米,則兩景點(diǎn)A、B間的距離為__米(結(jié)果保留根號).15.計(jì)算:3﹣1﹣30=_____.16.如圖,將一張矩形紙片ABCD沿對角線BD折疊,點(diǎn)C的對應(yīng)點(diǎn)為,再將所折得的圖形沿EF折疊,使得點(diǎn)D和點(diǎn)A重合若,,則折痕EF的長為______.17.如圖,直徑為1000mm的圓柱形水管有積水(陰影部分),水面的寬度AB為800mm,則水的最大深度CD是______mm.18.二次根式中,x的取值范圍是.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點(diǎn)D,過點(diǎn)D作⊙O的切線交CB的延長線于點(diǎn)E,交AC于點(diǎn)F.(1)求證:點(diǎn)F是AC的中點(diǎn);(2)若∠A=30°,AF=,求圖中陰影部分的面積.20.(6分)小明、小剛和小紅打算各自隨機(jī)選擇本周日的上午或下午去揚(yáng)州馬可波羅花世界游玩.小明和小剛都在本周日上午去游玩的概率為________;求他們?nèi)嗽谕粋€(gè)半天去游玩的概率.21.(6分)一個(gè)不透明的袋子中,裝有標(biāo)號分別為1、-1、2的三個(gè)小球,他們除標(biāo)號不同外,其余都完全相同;攪勻后,從中任意取一個(gè)球,標(biāo)號為正數(shù)的概率是;攪勻后,從中任取一個(gè)球,標(biāo)號記為k,然后放回?cái)噭蛟偃∫粋€(gè)球,標(biāo)號記為b,求直線y=kx+b經(jīng)過一、二、三象限的概率.22.(8分)如圖1,在平面直角坐標(biāo)系中,直線y=﹣x+1與拋物線y=ax2+bx+c(a≠0)相交于點(diǎn)A(1,0)和點(diǎn)D(﹣4,5),并與y軸交于點(diǎn)C,拋物線的對稱軸為直線x=﹣1,且拋物線與x軸交于另一點(diǎn)B.(1)求該拋物線的函數(shù)表達(dá)式;(2)若點(diǎn)E是直線下方拋物線上的一個(gè)動點(diǎn),求出△ACE面積的最大值;(3)如圖2,若點(diǎn)M是直線x=﹣1的一點(diǎn),點(diǎn)N在拋物線上,以點(diǎn)A,D,M,N為頂點(diǎn)的四邊形能否成為平行四邊形?若能,請直接寫出點(diǎn)M的坐標(biāo);若不能,請說明理由.23.(8分)A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機(jī)地傳給B、C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機(jī)地傳給其他兩人中的某一人.(1)求兩次傳球后,球恰在B手中的概率;(2)求三次傳球后,球恰在A手中的概率.24.(10分)如圖,點(diǎn)A在∠MON的邊ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.求證:四邊形ABCD是矩形;若DE=3,OE=9,求AB、AD的長.25.(10分)某商場計(jì)劃購進(jìn)A,B兩種新型節(jié)能臺燈共100盞,A型燈每盞進(jìn)價(jià)為30元,售價(jià)為45元;B型臺燈每盞進(jìn)價(jià)為50元,售價(jià)為70元.(1)若商場預(yù)計(jì)進(jìn)貨款為3500元,求A型、B型節(jié)能燈各購進(jìn)多少盞?根據(jù)題意,先填寫下表,再完成本問解答:型號A型B型購進(jìn)數(shù)量(盞)x_____購買費(fèi)用(元)__________(2)若商場規(guī)定B型臺燈的進(jìn)貨數(shù)量不超過A型臺燈數(shù)量的3倍,應(yīng)怎樣進(jìn)貨才能使商場在銷售完這批臺燈時(shí)獲利最多?此時(shí)利潤為多少元?26.(12分)“不出城郭而獲山水之怡,身居鬧市而有林泉之致”,合肥市某區(qū)不斷推進(jìn)“園林城市”建設(shè),今春種植了四類花苗,園林部門從種植的這批花苗中隨機(jī)抽取了2000株,將四類花苗的種植株數(shù)繪制成扇形統(tǒng)計(jì)圖,將四類花苗的成活株數(shù)繪制成條形統(tǒng)圖.經(jīng)統(tǒng)計(jì)這批2000株的花苗總成活率為90%,其中玉蘭和月季的成活率較高,根據(jù)圖表中的信息解答下列問題:扇形統(tǒng)計(jì)圖中玉蘭所對的圓心角為,并補(bǔ)全條形統(tǒng)計(jì)圖;該區(qū)今年共種植月季8000株,成活了約株;園林部門決定明年從這四類花苗中選兩類種植,請用列表法或畫樹狀圖求恰好選到成活率較高的兩類花苗的概率.27.(12分)某校七年級開展征文活動,征文主題只能從“愛國”“敬業(yè)”“誠信”“友善”四個(gè)主題中選擇一個(gè),七年級每名學(xué)生按要求都上交了一份征文,學(xué)校為了解選擇各種征文主題的學(xué)生人數(shù),隨機(jī)抽取了部分征文進(jìn)行了調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.(1)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;(2)在扇形統(tǒng)計(jì)圖中,選擇“愛國”主題所對應(yīng)的圓心角是多少度?(3)如果該校七年級共有1200名考生,請估計(jì)選擇以“友善”為主題的七年級學(xué)生有多少名?

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解題分析】解:設(shè)動車速度為每小時(shí)x千米,則可列方程為:﹣=.故選D.2、A【解題分析】試題解析:∵一根圓柱形的空心鋼管任意放置,∴不管鋼管怎么放置,它的三視圖始終是,,,主視圖是它們中一個(gè),∴主視圖不可能是.故選A.3、D【解題分析】分析:由圖1、圖2結(jié)合題意可知,當(dāng)DP⊥AB時(shí),DP最短,由此可得DP最短=y最小=,這樣如圖3,過點(diǎn)P作PD⊥AB于點(diǎn)P,連接AD,結(jié)合△ABC是等邊三角形和點(diǎn)D是BC邊的中點(diǎn)進(jìn)行分析解答即可.詳解:由題意可知:當(dāng)DP⊥AB時(shí),DP最短,由此可得DP最短=y最小=,如圖3,過點(diǎn)P作PD⊥AB于點(diǎn)P,連接AD,∵△ABC是等邊三角形,點(diǎn)D是BC邊上的中點(diǎn),∴∠ABC=60°,AD⊥BC,∵DP⊥AB于點(diǎn)P,此時(shí)DP=,∴BD=,∴BC=2BD=4,∴AB=4,∴AD=AB·sin∠B=4×sin60°=,∴S△ABC=AD·BC=.故選D.點(diǎn)睛:“讀懂題意,知道當(dāng)DP⊥AB于點(diǎn)P時(shí),DP最短=”是解答本題的關(guān)鍵.4、B【解題分析】

首先利用相反數(shù),絕對值的意義,乘方計(jì)算方法計(jì)算化簡,進(jìn)一步利用負(fù)數(shù)的意義判定即可.【題目詳解】A、-(-2)=2,是正數(shù);B、-|-2|=-2,是負(fù)數(shù);C、(-2)2=4,是正數(shù);D、-(-2)3=8,是正數(shù).故選B.【題目點(diǎn)撥】此題考查負(fù)數(shù)的意義,利用相反數(shù),絕對值的意義,乘方計(jì)算方法計(jì)算化簡是解決問題的關(guān)鍵.5、B【解題分析】試題分析:根據(jù)線段垂直平分線上的點(diǎn)到兩端點(diǎn)的距離相等解答.解:到三角形三個(gè)頂點(diǎn)的距離相等的點(diǎn)是三角形三邊垂直平分線的交點(diǎn).故選B.點(diǎn)評:本題考查了線段垂直平分線上的點(diǎn)到兩端點(diǎn)的距離相等的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.6、A【解題分析】試題分析:由題意可知:從左面看得到的平面圖形是長方形是柱體,從上面看得到的平面圖形是圓的是圓柱或圓錐,綜合得出這個(gè)幾何體為圓柱,由此選擇答案即可.解:從左面看得到的平面圖形是長方形是柱體,符合條件的有A、C、D,從上面看得到的平面圖形是圓的是圓柱或圓錐,符合條件的有A、B,綜上所知這個(gè)幾何體是圓柱.故選A.考點(diǎn):由三視圖判斷幾何體.7、C【解題分析】試題解析:在Rt△ABO中,∵BO=30米,∠ABO為α,∴AO=BOtanα=30tanα(米).故選C.考點(diǎn):解直角三角形的應(yīng)用-仰角俯角問題.8、B【解題分析】∵四邊形ABCD是平行四邊形,

∴AD=BC=4,CD=AB=6,

∵由作法可知,直線MN是線段AC的垂直平分線,

∴AE=CE,

∴AE+DE=CE+DE=AD,

∴△CDE的周長=CE+DE+CD=AD+CD=4+6=1.

故選B.9、A【解題分析】試題分析:根據(jù)幾何體的主視圖可判斷C不合題意;根據(jù)左視圖可得B、D不合題意,因此選項(xiàng)A正確,故選A.考點(diǎn):幾何體的三視圖10、A【解題分析】分析:直接利用兩船的行駛距離除以速度=時(shí)間,得出等式求出答案.詳解:設(shè)甲、乙兩船在靜水中的速度均為xkm/h,則求兩船在靜水中的速度可列方程為:=.故選A.點(diǎn)睛:此題主要考查了由實(shí)際問題抽象出分式方程,正確表示出行駛的時(shí)間和速度是解題關(guān)鍵.11、A【解題分析】

直接利用點(diǎn)與圓的位置關(guān)系進(jìn)而得出答案.【題目詳解】解:∵⊙O的半徑為5cm,OA=4cm,∴點(diǎn)A與⊙O的位置關(guān)系是:點(diǎn)A在⊙O內(nèi).故選A.【題目點(diǎn)撥】此題主要考查了點(diǎn)與圓的位置關(guān)系,正確①點(diǎn)P在圓外?d>r,②點(diǎn)P在圓上?d=r,③點(diǎn)P在圓內(nèi)?d<r是解題關(guān)鍵.12、C【解題分析】

將一個(gè)數(shù)寫成的形式,其中,n是正數(shù),這種記數(shù)的方法叫做科學(xué)記數(shù)法,根據(jù)定義解答即可.【題目詳解】解:6000萬=6×1.故選:C.【題目點(diǎn)撥】此題考查科學(xué)記數(shù)法,當(dāng)所表示的數(shù)的絕對值大于1時(shí),n為正整數(shù),其值等于原數(shù)中整數(shù)部分的數(shù)位減去1,當(dāng)要表示的數(shù)的絕對值小于1時(shí),n為負(fù)整數(shù),其值等于原數(shù)中第一個(gè)非零數(shù)字前面所有零的個(gè)數(shù)的相反數(shù),正確掌握科學(xué)記數(shù)法中n的值的確定是解題的關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1【解題分析】

設(shè)拋物線的解析式為:y=ax2+b,由圖得知點(diǎn)(0,2.4),(1,0)在拋物線上,列方程組得到拋物線的解析式為:y=﹣x2+2.4,根據(jù)題意求出y=1.8時(shí)x的值,進(jìn)而求出答案;【題目詳解】設(shè)拋物線的解析式為:y=ax2+b,由圖得知:點(diǎn)(0,2.4),(1,0)在拋物線上,∴,解得:,∴拋物線的解析式為:y=﹣x2+2.4,∵菜農(nóng)的身高為1.8m,即y=1.8,則1.8=﹣x2+2.4,解得:x=(負(fù)值舍去)故他在不彎腰的情況下,橫向活動范圍是:1米,故答案為1.14、100+100【解題分析】【分析】由已知可得∠ACD=∠MCA=45°,∠B=∠NCB=30°,繼而可得∠DCB=60°,從而可得AD=CD=100米,DB=100米,再根據(jù)AB=AD+DB計(jì)算即可得.【題目詳解】∵M(jìn)N//AB,∠MCA=45°,∠NCB=30°,∴∠ACD=∠MCA=45°,∠B=∠NCB=30°,∵CD⊥AB,∴∠CDA=∠CDB=90°,∠DCB=60°,∵CD=100米,∴AD=CD=100米,DB=CD?tan60°=CD=100米,∴AB=AD+DB=100+100(米),故答案為:100+100.【題目點(diǎn)撥】本題考查了解直角三角形的應(yīng)用﹣﹣仰角俯角問題,解題的關(guān)鍵是借助俯角構(gòu)造直角三角形并解直角三角形.注意方程思想與數(shù)形結(jié)合思想的應(yīng)用.15、﹣.【解題分析】

原式利用零指數(shù)冪、負(fù)整數(shù)指數(shù)冪法則計(jì)算即可求出值.【題目詳解】原式=﹣1=﹣.故答案是:﹣.【題目點(diǎn)撥】考查了實(shí)數(shù)的運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.16、【解題分析】

首先由折疊的性質(zhì)與矩形的性質(zhì),證得是等腰三角形,則在中,利用勾股定理,借助于方程即可求得AN的長,又由≌,易得:,由三角函數(shù)的性質(zhì)即可求得MF的長,又由中位線的性質(zhì)求得EM的長,則問題得解【題目詳解】如圖,設(shè)與AD交于N,EF與AD交于M,根據(jù)折疊的性質(zhì)可得:,,,四邊形ABCD是矩形,,,,,,,設(shè),則,在中,,,,即,,,,≌,,,,,,由折疊的性質(zhì)可得:,,,,,故答案為.【題目點(diǎn)撥】本題考查了折疊的性質(zhì),全等三角形的判定與性質(zhì),三角函數(shù)的性質(zhì)以及勾股定理等知識,綜合性較強(qiáng),有一定的難度,解題時(shí)要注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.17、200【解題分析】

先求出OA的長,再由垂徑定理求出AC的長,根據(jù)勾股定理求出OC的長,進(jìn)而可得出結(jié)論.【題目詳解】解:∵⊙O的直徑為1000mm,

∴OA=OA=500mm.

∵OD⊥AB,AB=800mm,

∴AC=400mm,

∴OC===300mm,∴CD=OD-OC=500-300=200(mm).

答:水的最大深度為200mm.故答案為:200【題目點(diǎn)撥】本題考查的是垂徑定理的應(yīng)用,根據(jù)勾股定理求出OC的長是解答此題的關(guān)鍵.18、.【解題分析】根據(jù)二次根式被開方數(shù)必須是非負(fù)數(shù)的條件,要使在實(shí)數(shù)范圍內(nèi)有意義,必須.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)【解題分析】

(1)連接OD、CD,如圖,利用圓周角定理得到∠BDC=90°,再判定AC為⊙O的切線,則根據(jù)切線長定理得到FD=FC,然后證明∠3=∠A得到FD=FA,從而有FC=FA;(2)在Rt△ACB中利用含30度的直角三角形三邊的關(guān)系得到BC=AC=2,再證明△OBD為等邊三角形得到∠BOD=60°,接著根據(jù)切線的性質(zhì)得到OD⊥EF,從而可計(jì)算出DE的長,然后根據(jù)扇形的面積公式,利用S陰影部分=S△ODE-S扇形BOD進(jìn)行計(jì)算即可.【題目詳解】(1)證明:連接OD、CD,如圖,∵BC為直徑,∴∠BDC=90°,∵∠ACB=90°,∴AC為⊙O的切線,∵EF為⊙O的切線,∴FD=FC,∴∠1=∠2,∵∠1+∠A=90°,∠2+∠3=90°,∴∠3=∠A,∴FD=FA,∴FC=FA,∴點(diǎn)F是AC中點(diǎn);(2)解:在Rt△ACB中,AC=2AF=2,而∠A=30°,∴∠CBA=60°,BC=AC=2,∵OB=OD,∴△OBD為等邊三角形,∴∠BOD=60°,∵EF為切線,∴OD⊥EF,在Rt△ODE中,DE=OD=,∴S陰影部分=S△ODE﹣S扇形BOD=×1×﹣=﹣π.【題目點(diǎn)撥】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑.若出現(xiàn)圓的切線,必連過切點(diǎn)的半徑,構(gòu)造定理圖,得出垂直關(guān)系.簡記作:見切點(diǎn),連半徑,見垂直.也考查了圓周角定理和扇形的面積公式.20、(1);(2)【解題分析】

(1)根據(jù)題意,畫樹狀圖列出三人隨機(jī)選擇上午或下午去游玩的所有等可能結(jié)果,找到小明和小剛都在本周日上午去游玩的結(jié)果,根據(jù)概率公式計(jì)算可得;(2)由(1)中樹狀圖,找到三人在同一個(gè)半天去游玩的結(jié)果,根據(jù)概率公式計(jì)算可得.【題目詳解】解:(1)根據(jù)題意,畫樹狀圖如圖:由樹狀圖可知,三人隨機(jī)選擇本周日的上午或下午去游玩共有8種等可能結(jié)果,其中小明和小剛都在本周日上午去游玩的結(jié)果有(上,上,上)、(上,上,下)2種,∴小明和小剛都在本周日上午去游玩的概率為=;(2)由(1)中樹狀圖可知,他們?nèi)嗽谕粋€(gè)半天去游玩的結(jié)果有(上,上,上)、(下,下,下)這2種,∴他們?nèi)嗽谕粋€(gè)半天去游玩的概率為=.答:他們?nèi)嗽谕粋€(gè)半天去游玩的概率是.【題目點(diǎn)撥】本題考查的是用列表法或樹狀圖法求概率.注意列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.21、(1);(2)【解題分析】【分析】(1)直接運(yùn)用概率的定義求解;(2)根據(jù)題意確定k>0,b>0,再通過列表計(jì)算概率.【題目詳解】解:(1)因?yàn)?、-1、2三個(gè)數(shù)中由兩個(gè)正數(shù),所以從中任意取一個(gè)球,標(biāo)號為正數(shù)的概率是.(2)因?yàn)橹本€y=kx+b經(jīng)過一、二、三象限,所以k>0,b>0,又因?yàn)槿∏闆r:kb1-1211,11,-11,2-1-1,1-1,-1-1.222,12,-12,2共9種情況,符合條件的有4種,所以直線y=kx+b經(jīng)過一、二、三象限的概率是.【題目點(diǎn)撥】本題考核知識點(diǎn):求規(guī)概率.解題關(guān)鍵:把所有的情況列出,求出要得到的情況的種數(shù),再用公式求出.22、(1)y=x2+2x﹣3;(2);(3)詳見解析.【解題分析】試題分析:(1)先利用拋物線的對稱性確定出點(diǎn)B的坐標(biāo),然后設(shè)拋物線的解析式為y=a(x+3)(x-1),將點(diǎn)D的坐標(biāo)代入求得a的值即可;(2)過點(diǎn)E作EF∥y軸,交AD與點(diǎn)F,過點(diǎn)C作CH⊥EF,垂足為H.設(shè)點(diǎn)E(m,m2+2m-3),則F(m,-m+1),則EF=-m2-3m+4,然后依據(jù)△ACE的面積=△EFA的面積-△EFC的面積列出三角形的面積與m的函數(shù)關(guān)系式,然后利用二次函數(shù)的性質(zhì)求得△ACE的最大值即可;(3)當(dāng)AD為平行四邊形的對角線時(shí).設(shè)點(diǎn)M的坐標(biāo)為(-1,a),點(diǎn)N的坐標(biāo)為(x,y),利用平行四邊形對角線互相平分的性質(zhì)可求得x的值,然后將x=-2代入求得對應(yīng)的y值,然后依據(jù)=,可求得a的值;當(dāng)AD為平行四邊形的邊時(shí).設(shè)點(diǎn)M的坐標(biāo)為(-1,a).則點(diǎn)N的坐標(biāo)為(-6,a+5)或(4,a-5),將點(diǎn)N的坐標(biāo)代入拋物線的解析式可求得a的值.試題解析:(1)∴A(1,0),拋物線的對稱軸為直線x=-1,∴B(-3,0),設(shè)拋物線的表達(dá)式為y=a(x+3)(x-1),將點(diǎn)D(-4,5)代入,得5a=5,解得a=1,∴拋物線的表達(dá)式為y=x2+2x-3;(2)過點(diǎn)E作EF∥y軸,交AD與點(diǎn)F,交x軸于點(diǎn)G,過點(diǎn)C作CH⊥EF,垂足為H.設(shè)點(diǎn)E(m,m2+2m-3),則F(m,-m+1).∴EF=-m+1-m2-2m+3=-m2-3m+4.∴S△ACE=S△EFA-S△EFC=EF·AG-EF·HC=EF·OA=-(m+)2+.∴△ACE的面積的最大值為;(3)當(dāng)AD為平行四邊形的對角線時(shí):設(shè)點(diǎn)M的坐標(biāo)為(-1,a),點(diǎn)N的坐標(biāo)為(x,y).∴平行四邊形的對角線互相平分,∴=,=,解得x=-2,y=5-a,將點(diǎn)N的坐標(biāo)代入拋物線的表達(dá)式,得5-a=-3,解得a=8,∴點(diǎn)M的坐標(biāo)為(-1,8),當(dāng)AD為平行四邊形的邊時(shí):設(shè)點(diǎn)M的坐標(biāo)為(-1,a),則點(diǎn)N的坐標(biāo)為(-6,a+5)或(4,a-5),∴將x=-6,y=a+5代入拋物線的表達(dá)式,得a+5=36-12-3,解得a=16,∴M(-1,16),將x=4,y=a-5代入拋物線的表達(dá)式,得a-5=16+8-3,解得a=26,∴M(-1,26),綜上所述,當(dāng)點(diǎn)M的坐標(biāo)為(-1,26)或(-1,16)或(-1,8)時(shí),以點(diǎn)A,D,M,N為頂點(diǎn)的四邊形能成為平行四邊形.23、(1);(2).【解題分析】試題分析:(1)直接列舉出兩次傳球的所有結(jié)果,球球恰在B手中的結(jié)果只有一種即可求概率;(2)畫出樹狀圖,表示出三次傳球的所有結(jié)果,三次傳球后,球恰在A手中的結(jié)果有2種,即可求出三次傳球后,球恰在A手中的概率.試題解析:解:(1)兩次傳球的所有結(jié)果有4種,分別是A→B→C,A→B→A,A→C→B,A→C→A.每種結(jié)果發(fā)生的可能性相等,球球恰在B手中的結(jié)果只有一種,所以兩次傳球后,球恰在B手中的概率是;(2)樹狀圖如下,由樹狀圖可知,三次傳球的所有結(jié)果有8種,每種結(jié)果發(fā)生的可能性相等.其中,三次傳球后,球恰在A手中的結(jié)果有A→B→C→A,A→C→B→A這兩種,所以三次傳球后,球恰在A手中的概率是.考點(diǎn):用列舉法求概率.24、(1)證明見解析;(2)AB、AD的長分別為2和1.【解題分析】

(1)證Rt△ABO≌Rt△DEA(HL)得∠AOB=∠DAE,AD∥BC.證四邊形ABCD是平行四邊形,又,故四邊形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,AB=DE=2.設(shè)AD=x,則OA=x,AE=OE-OA=9-x.在Rt△DEA中,由得:.【題目詳解】(1)證明:∵AB⊥OM于B,DE⊥ON于E,∴.在Rt△ABO與Rt△DEA中,∵∴Rt△ABO≌Rt△DEA(HL).∴∠AOB=∠DAE.∴AD∥BC.又∵AB⊥OM,DC⊥OM,∴AB∥DC.∴四邊形ABCD是平行四邊形.∵,∴四邊形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,∴AB=DE=2.設(shè)AD=x,則OA=x,AE=OE-OA=9-x.在Rt△DEA中,由得:,解得.∴AD=1.即AB、AD的長分別為2和1.【題目點(diǎn)撥】矩形的判定和性質(zhì);掌握判斷定證三角形全等是關(guān)鍵.25、(1)30x,y,50y;(2)商場購進(jìn)A型臺燈2盞,B型臺燈75盞,銷售完這批臺燈時(shí)獲利最多,此時(shí)利潤為1875元.【解題分析】

(1)設(shè)商場應(yīng)購進(jìn)A型臺燈x盞,表示出B型臺燈為y盞,然后根據(jù)“A,B兩種新型節(jié)能臺燈共100盞”、“進(jìn)貨款=A型臺燈的進(jìn)貨款+B型臺燈的進(jìn)貨款”列出方程組求解即可;(2)設(shè)商場銷售完這批臺燈可獲利y元,根據(jù)獲利等于兩種臺燈的獲利總和列式整理,再求出x的取值范圍,然后根據(jù)一次函數(shù)的增減性求出獲利的最大值.【題目詳解】解:(1)設(shè)商場應(yīng)購進(jìn)A型臺燈x盞,則B型臺燈為y盞,根據(jù)題意得:解得:.答:應(yīng)購進(jìn)A型臺燈75盞,B型臺燈2盞.故答案為30x;y;50y;(2)設(shè)商場應(yīng)購進(jìn)A型臺燈x盞,銷售完這批臺燈可獲利y元,則y=(45﹣30)x+(70﹣50)(100﹣x)=15x+1﹣20x=﹣5x+1,即y=﹣5x+1.∵B型臺燈的進(jìn)貨數(shù)量不超過A型臺燈數(shù)量的3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論