新高考數(shù)學(xué)一輪復(fù)習(xí)講練測(cè)專題4.2應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(講)解析版_第1頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測(cè)專題4.2應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(講)解析版_第2頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測(cè)專題4.2應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(講)解析版_第3頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測(cè)專題4.2應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(講)解析版_第4頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測(cè)專題4.2應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(講)解析版_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題4.2應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性新課程考試要求1.了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系,會(huì)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間.核心素養(yǎng)本節(jié)涉及所有的數(shù)學(xué)核心素養(yǎng):邏輯推理(多例)、數(shù)學(xué)建模、直觀想象(例4.5)、數(shù)學(xué)運(yùn)算(多例)、數(shù)據(jù)分析等.考向預(yù)測(cè)(1)以研究函數(shù)的單調(diào)性、單調(diào)區(qū)間等問(wèn)題為主,根據(jù)函數(shù)的單調(diào)性確定參數(shù)的值或范圍,與不等式、函數(shù)與方程、函數(shù)的圖象相結(jié)合;(2)單獨(dú)考查利用導(dǎo)數(shù)研究函數(shù)的某一性質(zhì)以小題呈現(xiàn);大題常與不等式、方程等結(jié)合考查,綜合性較強(qiáng).其中研究函數(shù)的極值、最值,都繞不開研究函數(shù)的單調(diào)性.【知識(shí)清單】1.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性在內(nèi)可導(dǎo)函數(shù),在任意子區(qū)間內(nèi)都不恒等于0.在上為增函數(shù).在上為減函數(shù).【考點(diǎn)分類剖析】考點(diǎn)一:判斷或證明函數(shù)的單調(diào)性【典例1】(2020·遼寧高三期中)已知函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù),求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)若SKIPIF1<0時(shí),函數(shù)在SKIPIF1<0上單調(diào)遞增;若SKIPIF1<0時(shí),函數(shù)在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增;(2)SKIPIF1<0.【解析】(1)先求導(dǎo),根據(jù)導(dǎo)數(shù)和函數(shù)的單調(diào)性的關(guān)系,分類討論即可求出;(2)對(duì)SKIPIF1<0求導(dǎo)得SKIPIF1<0,由SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù),可得SKIPIF1<0時(shí),SKIPIF1<0恒成立,令SKIPIF1<0,SKIPIF1<0,利用導(dǎo)數(shù)求出SKIPIF1<0的最小值,即可求得SKIPIF1<0的取值范圍.【詳解】解:(1)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,①若SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)函數(shù)在SKIPIF1<0上單調(diào)遞增;②若SKIPIF1<0時(shí),令SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,所以函數(shù)在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.(2)SKIPIF1<0,若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù),又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,有SKIPIF1<0,可得函數(shù)SKIPIF1<0的增區(qū)間為SKIPIF1<0,減區(qū)間為SKIPIF1<0,所以SKIPIF1<0,有SKIPIF1<0,故實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.【典例2】(2020·全國(guó)高考真題(理))已知函數(shù)f(x)=sin2xsin2x.(1)討論f(x)在區(qū)間(0,π)的單調(diào)性;【答案】(1)當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),單調(diào)遞增.【解析】(1)由函數(shù)的解析式可得:,則:,在上的根為:,當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),單調(diào)遞增.【規(guī)律方法】1.利用導(dǎo)數(shù)證明或判斷函數(shù)單調(diào)性的思路求函數(shù)f(x)的導(dǎo)數(shù)f′(x):(1)若f′(x)>0,則y=f(x)在(a,b)上單調(diào)遞增;(2)若f′(x)<0,則y=f(x)在(a,b)上單調(diào)遞減;(3)若恒有f′(x)=0,則y=f(x)是常數(shù)函數(shù),不具有單調(diào)性.2.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的方法步驟:①確定函數(shù)f(x)的定義域;②求導(dǎo)數(shù)f'(x);③由f'(x)>0(或f'(x)<0)解出相應(yīng)的x的取值范圍,當(dāng)f'【變式探究】1.(2020·全國(guó)高考真題(文))已知函數(shù).(1)當(dāng)時(shí),討論的單調(diào)性;【答案】(1)的減區(qū)間為,增區(qū)間為;(2).【解析】(1)當(dāng)時(shí),,,令,解得,令,解得,所以的減區(qū)間為,增區(qū)間為;2.已知函數(shù),。(Ⅰ)若,求的值;(Ⅱ)討論函數(shù)的單調(diào)性?!敬鸢浮?Ⅰ)a=3;(Ⅱ)答案見解析.【解析】(Ⅰ)由題意可得:,故,∴.(Ⅱ)∵函數(shù),其中a>1,∴f(x)的定義域?yàn)?0,+∞),,令f′(x)=0,得x1=1,x2=a?1.①若a?1=1,即a=2時(shí),,故f(x)在(0,+∞)單調(diào)遞增.②若0<a?1<1,即1<a<2時(shí),由f′(x)<0得,a?1<x<1;由f′(x)>0得,0<x<a?1,或x>1.故f(x)在(a?1,1)單調(diào)遞減,在(0,a?1),(1,+∞)單調(diào)遞增.③若a?1>1,即a>2時(shí),由f′(x)<0得,1<x<a?1;由f′(x)>0得,0<x<1,或x>a?1.故f(x)在(1,a?1)單調(diào)遞減,在(0,1),(a?1,+∞)單調(diào)遞增.綜上可得,當(dāng)a=2時(shí),f(x)在(0,+∞)單調(diào)遞增;當(dāng)1<a<2時(shí),f(x)在(a?1,1)單調(diào)遞減,在(0,a?1),(1,+∞)單調(diào)遞增;當(dāng)a>2時(shí),f(x)在(1,a?1)單調(diào)遞減,在(0,1),(a?1,+∞)單調(diào)遞增.【易錯(cuò)提醒】1.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的關(guān)鍵在于準(zhǔn)確判定導(dǎo)數(shù)的符號(hào),易錯(cuò)點(diǎn)是忽視函數(shù)的定義域.2.當(dāng)f(x)含參數(shù)時(shí),需依據(jù)參數(shù)取值對(duì)不等式解集的影響進(jìn)行分類討論.討論的標(biāo)準(zhǔn)有以下幾種可能:(1)f′(x)=0是否有根;(2)若f′(x)=0有根,求出的根是否在定義域內(nèi);(3)若在定義域內(nèi)有兩個(gè)根,比較兩個(gè)根的大?。键c(diǎn)二:求函數(shù)的單調(diào)區(qū)間【典例3】(2021·安徽蕪湖市·高三二模(文))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)若函數(shù)SKIPIF1<0為定義域內(nèi)的單調(diào)遞增函數(shù),求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)單增區(qū)間為SKIPIF1<0,單減區(qū)間為SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,根據(jù)導(dǎo)數(shù)與0的關(guān)系,判斷函數(shù)單調(diào)區(qū)間;(2)函數(shù)在定義域內(nèi)單增,等價(jià)于導(dǎo)數(shù)恒大于等于0,對(duì)導(dǎo)數(shù)求導(dǎo),討論參數(shù)的取值范圍,求得導(dǎo)數(shù)的最小值,分別討論導(dǎo)數(shù)是否恒大于等于0即可.【詳解】解:(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減;故函數(shù)的單增區(qū)間為SKIPIF1<0,單減區(qū)間為SKIPIF1<0.(2)由題知SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立,令SKIPIF1<0,SKIPIF1<0,①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,不符合題意;②當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,而SKIPIF1<0,(i)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,使得SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因此當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,此時(shí)SKIPIF1<0,不符合題意;(ii)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,故SKIPIF1<0,符合題意;(iii)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,使得SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因此當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0,不符合題意;綜上所述:SKIPIF1<0.【總結(jié)提升】利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的方法(1)當(dāng)導(dǎo)函數(shù)不等式可解時(shí),解不等式f′(x)>0或f′(x)<0求出單調(diào)區(qū)間.(2)當(dāng)方程f′(x)=0可解時(shí),解出方程的實(shí)根,按實(shí)根把函數(shù)的定義域劃分區(qū)間,確定各區(qū)間f′(x)的符號(hào),從而確定單調(diào)區(qū)間.(3)若導(dǎo)函數(shù)的方程、不等式都不可解,根據(jù)f′(x)結(jié)構(gòu)特征,利用圖象與性質(zhì)確定f′(x)的符號(hào),從而確定單調(diào)區(qū)間.溫馨提醒:所求函數(shù)的單調(diào)區(qū)間不止一個(gè),這些區(qū)間之間不能用并集“∪”及“或”連接,只能用“,”“和”字隔開.【變式探究】(2020·金華市曙光學(xué)校高二月考)已知,那么單調(diào)遞增區(qū)間__________;單調(diào)遞減區(qū)間__________.【答案】【解析】因?yàn)?故.令可得,即.又為增函數(shù),故當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.故答案為:(1);(2)考點(diǎn)三:利用函數(shù)的單調(diào)性研究函數(shù)圖象【典例4】(2021·浙江高考真題)已知函數(shù)SKIPIF1<0,則圖象為如圖的函數(shù)可能是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】由函數(shù)的奇偶性可排除A、B,結(jié)合導(dǎo)數(shù)判斷函數(shù)的單調(diào)性可判斷C,即可得解.【詳解】對(duì)于A,SKIPIF1<0,該函數(shù)為非奇非偶函數(shù),與函數(shù)圖象不符,排除A;對(duì)于B,SKIPIF1<0,該函數(shù)為非奇非偶函數(shù),與函數(shù)圖象不符,排除B;對(duì)于C,SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,與圖象不符,排除C.故選:D.【典例5】(2018·全國(guó)高考真題(理))函數(shù)的圖像大致為()A. B.C. D.【答案】B【解析】為奇函數(shù),舍去A,舍去D;,所以舍去C;因此選B.【規(guī)律方法】1.函數(shù)圖象的辨識(shí)主要從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置.(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢(shì);(3)從函數(shù)的奇偶性,判斷圖象的對(duì)稱性;(4)從函數(shù)的特征點(diǎn),排除不合要求的圖象.2.函數(shù)的圖象與函數(shù)的導(dǎo)數(shù)關(guān)系的判斷方法(1)對(duì)于原函數(shù),要重點(diǎn)考查其圖象在哪個(gè)區(qū)間內(nèi)單調(diào)遞增,在哪個(gè)區(qū)間內(nèi)單調(diào)遞減.(2)對(duì)于導(dǎo)函數(shù),則應(yīng)考查其函數(shù)值在哪個(gè)區(qū)間內(nèi)大于零,在哪個(gè)區(qū)間內(nèi)小于零,并考查這些區(qū)間與原函數(shù)的單調(diào)區(qū)間是否一致.【變式探究】1.(2020·安徽金安?六安一中高三其他(文))已知函數(shù)f(x)=ex-(x+1)2(e為2.71828…),則f(x)的大致圖象是()A. B.C. D.【答案】C【解析】函數(shù),當(dāng)時(shí),,故排除A、D,又,當(dāng)時(shí),,所以在為減函數(shù),故排除B,故選:C.2.(2019·云南高考模擬(文))函數(shù)y=fx的導(dǎo)函數(shù)yA. B. C. D.【答案】A【解析】如下圖所示:當(dāng)x<a,b<x<c時(shí),f'(x)>0,f(x)單調(diào)遞增;當(dāng)a<x<b,x>c時(shí),考點(diǎn)四:利用函數(shù)的單調(diào)性解不等式【典例6】(2021·云南昆明市·昆明一中高三其他模擬(文))已知函數(shù)SKIPIF1<0,若SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】根據(jù)函數(shù)的奇偶性的定義,判斷函數(shù)的奇偶性,運(yùn)用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,最后運(yùn)用函數(shù)的奇偶性、單調(diào)性進(jìn)行求解即可.【詳解】因?yàn)楹瘮?shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0為奇函數(shù);又因?yàn)镾KIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,故選:A【總結(jié)提升】比較大小或解不等式的思路方法(1)根據(jù)導(dǎo)數(shù)計(jì)算公式和已知的不等式構(gòu)造函數(shù),利用不等關(guān)系得出函數(shù)的單調(diào)性,即可確定函數(shù)值的大小關(guān)系,關(guān)鍵是觀察已知條件構(gòu)造出恰當(dāng)?shù)暮瘮?shù).(2)含有兩個(gè)變?cè)牟坏仁?,可以把兩個(gè)變?cè)醋鲀蓚€(gè)不同的自變量,構(gòu)造函數(shù)后利用單調(diào)性確定其不等關(guān)系.【變式探究】(2020·山東奎文?濰坊中學(xué)高二月考)【多選題】設(shè)f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),f′(x),g'(x)為其導(dǎo)函數(shù),當(dāng)x<0時(shí),f′(x)g(x)+f(x)g'(x)<0且g(﹣3)=0,則使得不等式f(x)g(x)<0成立的x的取值范圍是()A.(﹣∞,﹣3) B.(﹣3,0) C.(0,3) D.(3,+∞)【答案】BD【解析】∵f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),∴f(﹣x)=﹣f(x),g(﹣x)=g(x),令h(x)=f(x)?g(x),則h(﹣x)=﹣h(x),故h(x)=f(x)?g(x)為R上的奇函數(shù),∵當(dāng)x<0時(shí),f′(x)?g(x)+f(x)?g'(x)<0,即x<0時(shí),h′(x)=f′(x)?g(x)+f(x)?g'(x)<0,∴h(x)=f(x)?g(x)在區(qū)間(﹣∞,0)上單調(diào)遞減,∴奇函數(shù)h(x)在區(qū)間(0,+∞)上也單調(diào)遞減,如圖:由g(﹣3)=0,∴h(﹣3)=h(3)=0,∴當(dāng)x∈(﹣3,0)∪(3,+∞)時(shí),h(x)=f(x)?g(x)<0,故選:BD.考點(diǎn)五:利用函數(shù)的單調(diào)性比較大小【典例7】(2021·昆明市·云南師大附中高三月考(文))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大小關(guān)系為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】設(shè)SKIPIF1<0,SKIPIF1<0,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,利用函數(shù)的單調(diào)性比較函數(shù)值的大??;【詳解】解:設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0恒成立,∴函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,故選:D.【總結(jié)提升】在比較,,,的大小時(shí),首先應(yīng)該根據(jù)函數(shù)的奇偶性與周期性將,,,通過(guò)等值變形將自變量置于同一個(gè)單調(diào)區(qū)間,然后根據(jù)單調(diào)性比較大?。咀兪教骄俊浚?020·新泰市第二中學(xué)高三其他)【多選題】已知定義在()上的函數(shù),是的導(dǎo)函數(shù),且恒有成立,則()A. B.C. D.【答案】CD【解析】分析:構(gòu)造函數(shù),然后利用導(dǎo)數(shù)和已知條件求出在()上單調(diào)遞減,從而有,,據(jù)此轉(zhuǎn)化化簡(jiǎn)后即可得出結(jié)論.詳解:設(shè),則,因?yàn)?)時(shí),,所以()時(shí),,因此在()上單調(diào)遞減,所以,,即,.故選:CD.考點(diǎn)六:利用函數(shù)的單調(diào)性求參數(shù)的范圍(值)【典例8】(2020·全國(guó)高三其他模擬(文))若函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】依題意得SKIPIF1<0在定義域內(nèi)單調(diào)遞增,得SKIPIF1<0;SKIPIF1<0在定義域內(nèi)單調(diào)遞增,利用導(dǎo)數(shù)求得SKIPIF1<0,又因?yàn)镾KIPIF1<0,即可求得結(jié)果.【詳解】由題意可知函數(shù)SKIPIF1<0在定義域內(nèi)單調(diào)遞增,∴SKIPIF1<0,得SKIPIF1<0;函數(shù)SKIPIF1<0在定義域內(nèi)單調(diào)遞增,則SKIPIF1<0在SKIPIF1<0上恒成立,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,而當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.又因?yàn)镾KIPIF1<0,解得SKIPIF1<0.綜上,實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:C【典例9】(2021·寧夏石嘴山市·高三二模(文))設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的單調(diào)區(qū)間;(2)設(shè)函數(shù)SKIPIF1<0是單調(diào)遞增函數(shù),求實(shí)數(shù)SKIPIF1<0的值.【答案】(1)SKIPIF1<0的單調(diào)增區(qū)間為SKIPIF1<0,單調(diào)減區(qū)間為SKIPIF1<0;(2)SKIPIF1<0【解析】(1)對(duì)SKIPIF1<0求導(dǎo),判斷SKIPIF1<0正負(fù),從而求出單調(diào)性;(2)對(duì)SKIPIF1<0化簡(jiǎn)并求導(dǎo)得到:SKIPIF1<0對(duì)SKIPIF1<0進(jìn)行討論,進(jìn)一步求出答案.【詳解】∵SKIPIF1<0,所以定義域?yàn)镾KIPIF1<0所以SKIPIF1<0令SKIPIF1<0解得SKIPIF1<0,SKIPIF1<0解得SKIPIF1<0且SKIPIF1<0故SKIPIF1<0的單調(diào)增區(qū)間為SKIPIF1<0,單調(diào)減區(qū)間為SKIPIF1<0;(2)∵SKIPIF1<0∴SKIPIF1<0定義域?yàn)镾KIPIF1<0則SKIPIF1<0∵SKIPIF1<0為增函數(shù)∴SKIPIF1<0對(duì)任意SKIPIF1<0恒成立.若SKIPIF1<0,則SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴故SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,不符合題意;若SKIPIF1<0,則令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,則SKIPIF1<0,∴則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴故SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,不符合題意;若SKIPIF1<0,則令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0則SKIPIF1<0,∴則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴故SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,不符合題意;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0恒成立,故符合題意,綜上所述SKIPIF1<0.【總結(jié)提升】1.由函數(shù)的單調(diào)性求參數(shù)的取值范圍的方法(1)可導(dǎo)函數(shù)在區(qū)間(a,b)上單調(diào),實(shí)際上就是在該區(qū)間上f′(x)≥0(或f′(x)≤0)恒成立,得到關(guān)于參數(shù)的不等式,從而轉(zhuǎn)化為求函數(shù)的最值問(wèn)題,求出參數(shù)的取值范圍.注意檢驗(yàn)參數(shù)取“=”時(shí)是否滿足題意.(2)可導(dǎo)函數(shù)在區(qū)間(a,b)上存在單調(diào)區(qū)間,實(shí)際上就是f′(x)>0(或f′(x)<0)在該區(qū)間上存在解集,從而轉(zhuǎn)化為不等式問(wèn)題,求出參數(shù)的取值范圍.再驗(yàn)證參數(shù)取“=”時(shí)f(x)是否滿足題意.(3)若已知f(x)在區(qū)間I上的單調(diào)性,區(qū)間I上含有參數(shù)時(shí),可先求出f(x)的單調(diào)區(qū)間,令I(lǐng)是其單調(diào)區(qū)間的子集,從而求出參數(shù)的取值范圍.2.恒成立問(wèn)題的重要思路(1)m≥f(x)恒成立?m≥f(x)max.(2)m≤f(x)恒成立?m≤f(x)min.【變式探究】1.(2020·山東肥城高二期中)若函數(shù)在區(qū)間單調(diào)遞增,則的取值范圍是______;若函數(shù)在區(qū)間內(nèi)不單調(diào),則的取值范圍是______.【答案】【解析】若在區(qū)間單調(diào)遞增,所以在上恒成立,即在上恒成立,又時(shí),,所以;若函數(shù)在區(qū)間內(nèi)不單調(diào),則方程在區(qū)間有解,因?yàn)闀r(shí),,因此只需.故答案為:;.2.(2

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論