版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江西省上饒2024屆高一數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.如圖是一個幾何體的三視圖,則此幾何體的直觀圖是.A. B.C. D.2.二次函數(shù)中,,則函數(shù)的零點個數(shù)是A.個 B.個C.個 D.無法確定3.若a2+b2=2c2(c≠0),則直線ax+by+c=0被圓x2+y2=1所截得的弦長為A. B.1C. D.4.已知a=log20.3,b=20.3,c=0.30.3,則a,b,c三者的大小關系是()A. B.C. D.5.直線與圓相交于兩點,若,則的取值范圍是A. B.C. D.6.如果兩個函數(shù)的圖象經(jīng)過平移后能夠重合,則稱這兩個函數(shù)為“互為生成”函數(shù),給出下列函數(shù):;;;,其中“互為生成”函數(shù)的是A. B.C. D.7.方程的解所在區(qū)間是()A. B.C. D.8.已知函數(shù),下列關于該函數(shù)結(jié)論錯誤的是()A.的圖象關于直線對稱 B.的一個周期是C.的最大值為 D.是區(qū)間上的增函數(shù)9.已知直線,與平行,則的值是()A0或1 B.1或C.0或 D.10.函數(shù)的定義域為()A.(-∞,4) B.[4,+∞)C.(-∞,4] D.(-∞,1)∪(1,4]二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11.冪函數(shù)f(x)的圖象過點(4,2),則f(x)的解析式是______12.已知函數(shù)f(x)=π6x,x13.已知P為△ABC所在平面外一點,且PA,PB,PC兩兩垂直,則下列命題:①PA⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC,其中正確命題的個數(shù)是________14.函數(shù)的圖象的對稱中心的坐標為___________.15.已知圓,圓,則兩圓公切線的方程為__________三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16.已知關于x,y的方程C:(1)當m為何值時,方程C表示圓;(2)在(1)的條件下,若圓C與直線l:相交于M、N兩點,且|MN|=,求m的值.17.某農(nóng)戶利用墻角線互相垂直的兩面墻,將一塊可折疊的長為am的籬笆墻圍成一個雞圈,籬笆的兩個端點A,B分別在這兩墻角線上,現(xiàn)有三種方案:方案甲:如圖1,圍成區(qū)域為三角形;方案乙:如圖2,圍成區(qū)域為矩形;方案丙:如圖3,圍成區(qū)域為梯形,且.(1)在方案乙、丙中,設,分別用x表示圍成區(qū)域的面積,;(2)為使圍成雞圈面積最大,該農(nóng)戶應該選擇哪一種方案,并說明理由.18.過圓內(nèi)一點P(3,1)作弦AB,當|AB|最短時,求弦長|AB|.19.定義在(-1,1)上的奇函數(shù)為減函數(shù),且,求實數(shù)a的取值范圍.20.已知函數(shù)的圖象(部分)如圖所示,(1)求函數(shù)的解析式和對稱中心坐標;(2)求函數(shù)的單調(diào)遞增區(qū)間21.已知,,第三象限角,.求:(1)的值;(2)的值
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、D【解析】由已知可得原幾何體是一個圓錐和圓柱的組合體,上部分是一個圓錐,下部分是一個圓柱,而且圓錐和圓柱的底面積相等,故此幾何體的直觀圖是:故選D2、C【解析】計算得出的符號,由此可得出結(jié)論.【詳解】由已知條件可得,因此,函數(shù)的零點個數(shù)為.故選:C.3、D【解析】因為,所以設弦長為,則,即.考點:本小題主要考查直線與圓的位置關系——相交.4、D【解析】利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性即可得出大小關系【詳解】∵a=log20.3<0,b=20.3>1,c=0.30.3∈(0,1),則a,b,c三者的大小關系是b>c>a.故選:D【點睛】本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎題5、C【解析】圓,即.直線與圓相交于兩點,若,設圓心到直線距離.則,解得.即,解得故選C.點睛:直線與圓的位置關系常用處理方法:(1)直線與圓相切處理時要利用圓心與切點連線垂直,構(gòu)建直角三角形,進而利用勾股定理可以建立等量關系;(2)直線與圓相交,利用垂徑定理也可以構(gòu)建直角三角形;(3)直線與圓相離時,當過圓心作直線垂線時長度最小6、D【解析】根據(jù)“互為生成”函數(shù)的定義,利用三角恒等變換化簡函數(shù)的解析式,再結(jié)合函數(shù)的圖象變換規(guī)律,得出結(jié)論【詳解】∵;;;,故把中的函數(shù)的圖象向右平移后再向下平移1個單位,可得中的函數(shù)圖象,故為“互為生成”函數(shù),故選D【點睛】本題主要主要考查新定義,三角恒等變換,函數(shù)的圖象變換規(guī)律,屬于中檔題7、C【解析】判斷所給選項中的區(qū)間的兩個端點的函數(shù)值的積的正負性即可選出正確答案.【詳解】∵,∴,,,,∴,∵函數(shù)的圖象是連續(xù)的,∴函數(shù)的零點所在的區(qū)間是.故選C【點睛】本題考查了根據(jù)零存在原理判斷方程的解所在的區(qū)間,考查了數(shù)學運算能力.8、C【解析】利用誘導公式證明可判斷A;利用可判斷B;利用三角函數(shù)的性質(zhì)可判斷C;利用復合函數(shù)的單調(diào)性可判斷D.【詳解】對于A,,所以的圖象關于直線對稱,故A正確;對于B,,所以的一個周期是,故B正確;對于C,,所以的最大值為,當時,,取得最大值,所以的最大值為,故C不正確;對于D,在上單調(diào)遞增,,在上單調(diào)遞增,在上單調(diào)遞減,,根據(jù)復合函數(shù)的單調(diào)性易知,在上單調(diào)遞增,所以是區(qū)間上的增函數(shù),故D正確.故選:C.【點睛】關鍵點點睛:解決本題的關鍵是熟練掌握函數(shù)對稱性及周期性的判定及三角函數(shù)的圖象與性質(zhì).9、C【解析】由題意得:或,故選C.考點:直線平行的充要條件10、D【解析】根據(jù)函數(shù)式的性質(zhì)可得,即可得定義域;【詳解】根據(jù)的解析式,有:解之得:且;故選:D【點睛】本題考查了具體函數(shù)定義域的求法,屬于簡單題;二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11、【解析】根據(jù)冪函數(shù)的概念設f(x)=xα,將點的坐標代入即可求得α值,從而求得函數(shù)解析式【詳解】設f(x)=xα,∵冪函數(shù)y=f(x)的圖象過點(4,2),∴4α=2∴α=這個函數(shù)解析式為故答案為【點睛】本題主要考查了待定系數(shù)法求冪函數(shù)解析式、指數(shù)方程解法等知識,屬于基礎題12、12##【解析】利用分段函數(shù)的解析式,代入求解.【詳解】因為函數(shù)f(x)=所以f(f(13))=f故答案為:113、3【解析】如圖所示,∵PA⊥PC,PA⊥PB,PC∩PB=P,∴PA⊥平面PBC.又∵BC?平面PBC,∴PA⊥BC.同理PB⊥AC,PC⊥AB,但AB不一定垂直于BC.故答案為:3.14、【解析】利用正切函數(shù)的對稱中心求解即可.【詳解】令=(),得(),∴對稱中心的坐標為故答案:()15、【解析】圓,圓心為(0,0),半徑為1;圓,圓心為(4,0),半徑為5.圓心距為4=5-1,故兩圓內(nèi)切.切點為(-1,0),圓心連線為x軸,所以兩圓公切線的方程為,即.故答案.三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16、(1)m<5;(2)m=4【解析】(1)求出圓的標準方程形式,即可求出m的值;(2)利用半徑,弦長,弦心距的關系列方程求解即可【詳解】解:(1)方程C可化為,顯然只要5?m>0,即m<5時,方程C表示圓;(2)因為圓C的方程為,其中m<5,所以圓心C(1,2),半徑,則圓心C(1,2)到直線l:x+2y?4=0的距離為,因為|MN|=,所以|MN|=,所以,解得m=4【點睛】本題主要考查直線和圓的位置關系的應用,根據(jù)圓的標準方程求出圓心和半徑是解決本題的關鍵17、(1),;,.(2)農(nóng)戶應該選擇方案三,理由見解析.【解析】(1)根據(jù)矩形面積與梯形的面積公式表示即可得答案;(2)先根據(jù)基本不等式研究方案甲得面積的最大值為,再根據(jù)二次函數(shù)的性質(zhì)結(jié)合(1)研究,的最大值即可得答案.【小問1詳解】解:對于方案乙,當時,,所以矩形的面積,;對于方案丙,當時,,由于所以,所以梯形面積為,.【小問2詳解】解:對于方案甲,設,則,所以三角形的面積為,當且僅當時等號成立,故方案甲的雞圈面積最大值為.對于方案乙,由(1)得,,當且僅當時取得最大值.故方案乙的雞圈面積最大值為;對于方案丙,,.當且僅當時取得最大值.故方案丙的雞圈面積最大值為;由于所以農(nóng)戶應該選擇方案丙,此時雞圈面積最大.18、.【解析】考慮直線AB的斜率不存在時,求出A,B坐標,得到,當直線AB的斜率存在時,圓的圓心(4,2),半徑r=3,圓心(4,2)到直線AB的距離為:,利用勾股定理基本不不等式即可求出圓的最短的弦長【詳解】(1)當直線AB的斜率不存在時,,所以(2)當直線AB的斜率存在時,圓心(4,2)到直線AB的距離為:,即,當時取得最小值7,弦長的最小值為.綜上弦長的最小值為.【點睛】本題考查圓的最短弦長的求法,是基礎題,解題時要認真審題,注意兩點間距離公式的合理運用19、【解析】結(jié)合奇函數(shù)性質(zhì)以及單調(diào)性,去掉外層函數(shù),變成一元二次不等式進行求解.【詳解】由題即根據(jù)奇函數(shù)定義可知原不等式為又因為單調(diào)遞減函數(shù),故,解得或又因為函數(shù)定義域為故,解得,所以綜上得的范圍為.20、(1),對稱中心;(2),【解析】(1)由函數(shù)的圖象得出A,求出函數(shù)的四分之一周期,從而得出ω,代入最高點坐標求出φ,得函數(shù)的解析式,進而求出對稱中心坐標;(2)令,從而得到函數(shù)的單調(diào)遞增區(qū)間.【詳解】(1)由題意可知,,,,又當時,函數(shù)取得最大值2,所以,,又因為,所以,所以函數(shù),令,,得對稱中心,.(2)令,解得,,所以單調(diào)遞增區(qū)間為,【點睛】求y=Asin(ωx+φ)的解析式,條件不管以何種方式給出,一般先求A,再求ω,最后求φ;求y=Asin(ωx+φ)的單調(diào)遞增區(qū)間、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度池塘租賃與農(nóng)業(yè)休閑體驗合同3篇
- 二零二五年度人工智能教育平臺開發(fā)與運營合同2篇
- 2025版在線教育平臺運營管理合同范本4篇
- 2025年度車輛駕駛員責任保險合同范本4篇
- 2025年度美團外賣外賣員意外傷害保險合同4篇
- 二零二五年度智能化農(nóng)業(yè)合作社股權交易管理合同3篇
- 2025年度女方提出離婚男方同意財產(chǎn)分割合同3篇
- 二零二五年度南京市二手房購房合同(帶家具家電)4篇
- 2025林地承包合同書樣本
- 2025食品包裝采購合同
- 完整版秸稈炭化成型綜合利用項目可行性研究報告
- 油氣行業(yè)人才需求預測-洞察分析
- 《數(shù)據(jù)采集技術》課件-Scrapy 框架的基本操作
- 2025年河北省單招語文模擬測試二(原卷版)
- 高一化學《活潑的金屬單質(zhì)-鈉》分層練習含答案解析
- DB34∕T 4010-2021 水利工程外觀質(zhì)量評定規(guī)程
- 2024年內(nèi)蒙古中考英語試卷五套合卷附答案
- 2024年電工(高級)證考試題庫及答案
- 農(nóng)產(chǎn)品質(zhì)量評估與分級
- 儲能電站火災應急預案演練
- 人教版(新插圖)二年級下冊數(shù)學 第4課時用“進一法”和“去尾法”解決簡單的實際問題 教學課件
評論
0/150
提交評論