版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
呼和浩特市重點中學2024屆高一數學第一學期期末學業(yè)質量監(jiān)測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.定義運算:,將函數的圖象向左平移的單位后,所得圖象關于軸對稱,則的最小值是()A. B.C. D.2.滿足的集合的個數為()A. B.C. D.3.已知函數,則A.1 B.C.2 D.04.已知集合,,則()A. B.C. D.5.已知是的三個內角,設,若恒成立,則實數的取值范圍是()A. B.C. D.6.設函數f(x)=x-lnx,則函數y=f(x)()A.在區(qū)間,(1,e)內均有零點B.在區(qū)間,(1,e)內均無零點C.在區(qū)間內有零點,在區(qū)間(1,e)內無零點D.區(qū)間內無零點,在區(qū)間(1,e)內有零點7.若不等式(>0,且≠1)在[1,2]上恒成立,則的取值范圍是A.(1,2) B.(2,)C.(0,1)(2,) D.(0,)8.已知,若函數恰有兩個零點、(),那么一定有()A. B.C. D.9.已知某產品的總成本C(單位:元)與年產量Q(單位:件)之間的關系為C=310Q2+3000.設該產品年產量為Q時的平均成本為fA.30 B.60C.900 D.18010.函數單調遞增區(qū)間為A. B.C D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知角的終邊過點(1,-2),則________12.設函數,則下列結論①的圖象關于直線對稱②的圖象關于點對稱③的圖象向左平移個單位,得到一個偶函數的圖象④的最小正周期為,且在上為增函數其中正確的序號為________.(填上所有正確結論的序號)13.函數的定義域是______14.當曲線與直線有兩個相異交點時,實數的取值范圍是________15.設x、y滿足約束條件,則的最小值是________.16.表示一位騎自行車和一位騎摩托車的旅行者在相距80km的甲、乙兩城間從甲城到乙城所行駛的路程與時間之間的函數關系,有人根據函數圖象,提出了關于這兩個旅行者的如下信息:①騎自行車者比騎摩托車者早出發(fā)3h,晚到1h;②騎自行車者是變速運動,騎摩托車者是勻速運動;③騎摩托車者在出發(fā)1.5h后追上了騎自行車者;④騎摩托車者在出發(fā)1.5h后與騎自行車者速度一樣其中,正確信息的序號是________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M,N分別是PA,BC的中點,且AD=2PD=2(1)求證:MN∥平面PCD;(2)求證:平面PAC⊥平面PBD;(3)求四棱錐P-ABCD的體積18.已知函數(常數).(Ⅰ)當時,求不等式的解集;(Ⅱ)當時,求最小值.19.已知函數,(1)若,解不等式;(2)若函數恰有三個零點,,,求的取值范圍20.已知函數,,.(1)若,求函數的解析式;(2)試判斷函數在區(qū)間上的單調性,并用函數單調性定義證明.21.已知函數(1)求函數的定義域,并判斷函數的奇偶性;(2)對于,不等式恒成立,求實數的取值范圍
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由題意可得,再根據平移得到的函數為偶函數,利用對稱軸即可解出.【詳解】因為,所以,其圖象向左平移個單位,得到函數的圖象,而圖象關于軸對稱,所以其為偶函數,于是,即,又,所以的最小值是故選:C.2、B【解析】列舉出符合條件的集合,即可得出答案.【詳解】滿足的集合有:、、.因此,滿足的集合的個數為.故選:B.【點睛】本題考查符合條件的集合個數的計算,只需列舉出符合條件的集合即可,考查分析問題和解決問題的能力,屬于基礎題.3、C【解析】根據題意可得,由對數的運算,即可求解,得到答案【詳解】由題意,函數,故選C【點睛】本題主要考查了函數值的求法,函數性質等基礎知識的應用,其中熟記對數的運算性質是解答的關鍵,著重考查了考查化歸與轉化思想、函數與方程思想,屬于基礎題,4、B【解析】直接利用交集運算法則得到答案.【詳解】,,則故選:【點睛】本題考查了交集的運算,屬于簡單題.5、D【解析】先化簡,因為恒成立,所以恒成立,即恒成立,所以,故選D.考點:三角函數二倍角公式、降次公式;6、D【解析】求出導函數,由導函數的正負確定函數的單調性,再由零點存在定理得零點所在區(qū)間【詳解】當x∈時,函數圖象連續(xù)不斷,且f′(x)=-=<0,所以函數f(x)在上單調遞減又=+1>0,f(1)=>0,f(e)=e-1<0,所以函數f(x)有唯一的零點在區(qū)間(1,e)內故選:D7、B【解析】分類討論:①若a>1,由題意可得:在區(qū)間上恒成立,即在區(qū)間上恒成立,則,結合反比例函數的單調性可知當時,,此時;②若0<a<1,由題意可得:在區(qū)間上恒成立,即,,函數,結合二次函數的性質可知,當時,取得最大值1,此時要求,與矛盾.綜上可得:的取值范圍是(2,).本題選擇B選項.點睛:在解決與對數函數相關的比較大小或解不等式問題時,要優(yōu)先考慮利用對數函數的單調性來求解.在利用單調性時,一定要明確底數a的取值對函數增減性的影響,及真數必須為正的限制條件8、A【解析】構造兩個函數和,根據兩個函數的圖象恰有兩個交點,在同一坐標系內作出函數的圖象,結合圖象,即可求解.【詳解】根據題意,構造兩個函數和,則兩個函數的圖象恰有兩個交點,在同一坐標系內作出函數的圖象,如圖所示,結合圖象可得.故選:A.9、B【解析】利用基本不等式進行最值進行解題.【詳解】解:∵某產品的總成本C(單位:元)與年產量Q(單位:件)之間的關系為C=∴f(Q)=當且僅當3Q10=3000Q∴fQ的最小值是60故選:B10、A【解析】,所以.故選A二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由三角函數的定義以及誘導公式求解即可.【詳解】的終邊過點(1,-2),故答案為:12、③【解析】利用正弦型函數的對稱性判斷①②的正誤,利用平移變換判斷③的正誤,利用周期性與單調性判斷④的正誤.【詳解】解:對于①,因為f()=sinπ=0,所以不是對稱軸,故①錯;對于②,因為f()=sin,所以點不是對稱中心,故②錯;對于③,將把f(x)的圖象向左平移個單位,得到的函數為y=sin[2(x)]=sin(2x)=cos2x,所以得到一個偶函數的圖象;對于④,因為若x∈[0,],則,所以f(x)在[0,]上不單調,故④錯;故正確的結論是③故答案為③【點睛】此題考查了正弦函數的對稱性、三角函數平移的規(guī)律、整體角處理的方法,正弦函數的圖象與性質是解本題的關鍵三、13、【解析】,即定義域為點睛:常見基本初等函數定義域的基本要求(1)分式函數中分母不等于零(2)偶次根式函數的被開方式大于或等于0.(3)一次函數、二次函數的定義域均為R.(4)y=x0的定義域是{x|x≠0}(5)y=ax(a>0且a≠1),y=sinx,y=cosx的定義域均為R.(6)y=logax(a>0且a≠1)的定義域為(0,+∞)14、【解析】由解析式可知曲線為半圓,直線恒過;畫出半圓的圖象,找到直線與半圓有兩個交點的臨界狀態(tài),利用圓的切線的求解方法和兩點連線斜率公式求得斜率的取值范圍.【詳解】為恒過的直線則曲線圖象如下圖所示:由圖象可知,當直線斜率時,曲線與直線有兩個相異交點與半圓相切,可得:解得:又本題正確結果:【點睛】本題考查利用曲線與直線的交點個數求解參數范圍的問題,關鍵是能夠通過數形結合的方式找到臨界狀態(tài),易錯點是忽略曲線的范圍,誤認為曲線為圓.15、-6【解析】先根據約束條件畫出可行域,再利用的幾何意義求最值,只需求出直線過可行域內的點時,從而得到的最小值即可【詳解】解:由得,作出不等式組對應的平面區(qū)域如圖(陰影部分ABC):平移直線,由圖象可知當直線,過點A時,直線截距最大,此時z最小,由得,即,代入目標函數,得∴目標函數的最小值是﹣6故答案為:【點睛】本題考查簡單線性規(guī)劃問題,屬中檔題16、①②③【解析】看時間軸易知①正確;騎摩托車者行駛的路程與時間的函數圖象是直線,所以是勻速運動,而騎自行車者行駛的路程與時間的函數圖象是折線,所以是變速運動,因此②正確;兩條曲線的交點的橫坐標對應著4.5,故③正確,④錯誤故答案為①②③.點睛:研究函數問題離不開函數圖象,函數圖象反映了函數的所有性質,在研究函數問題時要時時刻刻想到函數的圖象,學會從函數圖象上去分析問題、尋找解決問題的方法三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析(3)【解析】(1)先證明平面MEN∥平面PCD,再由面面平行的性質證明MN∥平面PCD;(2)證明AC⊥平面PBD,即可證明平面PAC⊥平面PBD;(3)利用錐體的體積公式計算即可【詳解】(1)證明:取AD的中點E,連接ME、NE,∵M、N是PA、BC的中點,∴在△PAD和正方形ABCD中,ME∥PD,NE∥CD;又∵ME∩NE=E,PD∩CD=D,∴平面MEN∥平面PCD,又MN?平面MNE,∴MN∥平面PCD;(2)證明:∵四邊形ABCD是正方形,∴AC⊥BD,又∵PD⊥底面ABCD,∴PD⊥AC,且PD∩BD=D,∴AC⊥平面PBD,∴平面PAC⊥平面PBD;(3)∵PD⊥底面ABCD,∴PD是四棱錐P-ABCD的高,且PD=1,∴正方形ABCD的面積為S=4,∴四棱錐P-ABCD的體積為VP-ABCD=×S四邊形ABCD×PD=×4×1=【點睛】本題考查了空間中的平行與垂直關系的應用問題,也考查了錐體體積計算問題,是中檔題18、(Ⅰ);(Ⅱ)答案見解析.【解析】(Ⅰ)由,得到,再由,利用一元二次不等式的解法結合對數函數的單調性求解;.(Ⅱ)化簡得到函數,令,,轉化為函數在上的最小值求解.,【詳解】(Ⅰ)當時,,由得,即:,解得:,所以的解集為.(Ⅱ),,.令,因為,所以,若求在上的最小值,即求函數在上的最小值,,,對稱軸為.①當時,即時,函數在為減函數,所以;②當時,即時,函數在為減函數,在為增函數,所以;③當,即時,函數在為增函數,所以.綜上,當時,的最小值為;當時,的最小值為;當時,的最小值為.【點睛】方法點睛:(1)二次函數在閉區(qū)間上的最值主要有三種類型:軸定區(qū)間定、軸動區(qū)間定、軸定區(qū)間動,不論哪種類型,解決的關鍵是考查對稱軸與區(qū)間的關系,當含有參數時,要依據對稱軸與區(qū)間的關系進行分類討論.(2)二次函數的單調性問題則主要依據二次函數圖象的對稱軸進行分析討論求解19、(1)(2)【解析】(1)分當時,當時,討論去掉絕對值,由一元二次不等式的求解方法可得答案;(2)得出分段函數的解析式,根據二次函數的性質和根與系數的關系可求得答案.【小問1詳解】解:當時,原不等式可化為…①(ⅰ)當時,①式化為,解得,所以;(ⅱ)當時,①式化為,解得,所以綜上,原不等式的解集為【小問2詳解】解:依題意,因為,且二次函數開口向上,所以當時,函數有且僅有一個零點所以時,函數恰有兩個零點所以解得不妨設,所以,是方程的兩相異實根,則,所以因為是方程的根,且,由求根公式得因為函數在上單調遞增,所以,所以.所以.所以a的取值范圍是20、(1)(2)見解析.【解析】(1)由求a的值即可;(2)根據a的大小分類討論即可.【小問1詳解】;【小問2詳解】任取,且,則,,,①時,,在單調遞增;②時,(i)時,單調遞減;(ii)時,單調遞增;即時,f(x)在單調遞減,在單調遞增;③時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度企業(yè)臨時工培訓與考核合同3篇
- 商場煙感報警系統(tǒng)采購與安裝合同(二零二五年)2篇
- 2025年度個人生育保險代繳服務合同范本4篇
- 2025版出臺二手房交易稅費計算與申報合同3篇
- 二零二五年度餐廳轉讓合同范本(含會員卡及積分系統(tǒng))3篇
- 2025年度墓地轉賣及墓園墓碑石材更換合同4篇
- 2025年度新能源汽車研發(fā)借款合同范本發(fā)布
- 二零二五年度多功能鏟車租賃與技術支持合同3篇
- 二零二五年度農業(yè)用電變壓器項目融資與風險管理合同
- 二零二五年度勞務公司員工心理健康與職業(yè)規(guī)劃合同3篇
- 乳腺癌的綜合治療及進展
- 【大學課件】基于BGP協(xié)議的IP黑名單分發(fā)系統(tǒng)
- 2025年八省聯(lián)考高考語文試題真題解讀及答案詳解課件
- 信息安全意識培訓課件
- 2024年山東省泰安市初中學業(yè)水平生物試題含答案
- 美的MBS精益管理體系
- 中國高血壓防治指南(2024年修訂版)解讀課件
- 2024安全員知識考試題(全優(yōu))
- 法律訴訟及咨詢服務 投標方案(技術標)
- 格式塔心理咨詢理論與實踐
- 英語六級詞匯(全)
評論
0/150
提交評論