2023數學科目知識點歸納總結【2篇】_第1頁
2023數學科目知識點歸納總結【2篇】_第2頁
2023數學科目知識點歸納總結【2篇】_第3頁
2023數學科目知識點歸納總結【2篇】_第4頁
2023數學科目知識點歸納總結【2篇】_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第2023數學科目知識點歸納總結【2篇】

2023數學科目知識點歸納總結篇一

歸納1

1、“包含”關系—子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

2、“相等”關系(5≥5,且5≤5,則5=5)

實例:設A={_|_2—1=0}B={—1,1}“元素相同”

結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

①任何一個集合是它本身的子集。AíA

②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

③如果AíB,BíC,那么AíC

④如果AíB同時BíA那么A=B

3、不含任何元素的集合叫做空集,記為Φ

規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

歸納2

形如y=k/_(k為常數且k≠0)的函數,叫做反比例函數。

自變量_的取值范圍是不等于0的一切實數。

反比例函數圖像性質:

反比例函數的圖像為雙曲線。

由于反比例函數屬于奇函數,有f(—_)=—f(_),圖像關于原點對稱。

另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

上面給出了k分別為正和負(2和—2)時的函數圖像。

當K0時,反比例函數圖像經過一,三象限,是減函數

當K0時,反比例函數圖像經過二,四象限,是增函數

反比例函數圖像只能無限趨向于坐標軸,無法和坐標軸相交。

知識點:

1、過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

2、對于雙曲線y=k/_,若在分母上加減任意一個實數(即y=k/(_±m(xù))m為常數),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

歸納3

方程的根與函數的零點

1、函數零點的概念:對于函數,把使成立的實數叫做函數的零點。

2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:方程有實數根,函數的圖象與坐標軸有交點,函數有零點。

3、函數零點的求法:

(1)(代數法)求方程的實數根;

(2)(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯系起來,并利用函數的性質找出零點。

4、二次函數的零點:

(1)△0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點。

(2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點。

(3)△0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點。

歸納3

形如y=k/_(k為常數且k≠0)的函數,叫做反比例函數。

自變量_的取值范圍是不等于0的一切實數。

反比例函數圖像性質:

反比例函數的圖像為雙曲線。

由于反比例函數屬于奇函數,有f(—_)=—f(_),圖像關于原點對稱。

另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

如圖,上面給出了k分別為正和負(2和—2)時的函數圖像。

當K0時,反比例函數圖像經過一,三象限,是減函數

當K0時,反比例函數圖像經過二,四象限,是增函數

反比例函數圖像只能無限趨向于坐標軸,無法和坐標軸相交。

知識點:

1、過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

2、對于雙曲線y=k/_,若在分母上加減任意一個實數(即y=k/(_±m(xù))m為常數),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

歸納4

冪函數的性質:

對于a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數,則_^(p/q)=q次根號(_的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=—k,則_=1/(_^k),顯然_≠0,函數的定義域是(—∞,0)∪(0,+∞)、因此可以看到_所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:

排除了為0與負數兩種可能,即對于_0,則a可以是任意實數;

排除了為0這種可能,即對于_0_=0的所有實數,q不能是偶數;

排除了為負數這種可能,即對于_為大于且等于0的所有實數,a就不能是負數。

總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;

如果a為負數,則_肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則_不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。

在_大于0時,函數的值域總是大于0的實數。

在_小于0時,則只有同時q為奇數,函數的值域為非零的實數。

而只有a為正數,0才進入函數的值域。

由于_大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況、

可以看到:

(1)所有的圖形都通過(1,1)這點。

(2)當a大于0時,冪函數為單調遞增的,而a小于0時,冪函數為單調遞減函數。

(3)當a大于1時,冪函數圖形下凹;當a小于1大于0時,冪函數圖形上凸。

(4)當a小于0時,a越小,圖形傾斜程度越大。

(5)a大于0,函數過(0,0);a小于0,函數不過(0,0)點。

(6)顯然冪函數無界。

解題方法:換元法

解數學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這種方法叫換元法,換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標準型問題標準化、復雜問題簡單化,變得容易處理。

換元法又稱輔助元素法、變量代換法。通過引進新的變量,可以把分散的條件聯系起來,隱含的條件顯露出來,或者把條件與結論聯系起來?;蛘咦?yōu)槭煜さ男问?,把復雜的計算和推證簡化。

它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數式,在研究方程、不等式、函數、數列、三角等問題中有廣泛的應用。

2023數學科目知識點歸納總結篇二

由于空集是任何非空集][合的真子集,因此B=?時也滿足B?A。解含有參數的集合問題時,要特別注意當參數在某個范圍內取值時所給的集合可能是空集這種情況。

忽視集合元素的三性致誤

集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數的集合,實際上就隱含著對字母參數的一些要求。

混淆命題的否定與否命題

命題的“否定”與命題的“否命題”是兩個不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對“若p,則q”形式的命題而言,既要否定條件也要否定結論。

充分條件、必要條件顛倒致誤

對于兩個條件A,B,如果A?B成立,則A是B的充分條件,B是A的必要條件;如果B?A成立,則A是B的必要條件,B是A的充分條件;如果A?B,則A,B互為充分必要條件。解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據充分條件和必要條件的概念作出準確的判斷。

“或”“且”“非”理解不準致誤

命題p∨q真?p真或q真,命題p∨q假?p假且q假(概括為一真即真);命題p∧q真?p真且q真,命題p∧q假?p假或q假(概括為一假即假);綈p真?p假,綈p假?p真(概括為一真一假)。求參數取值范圍的題目,也可以把“或”“且”“非”與集合的“并”“交”“補”對應起來進行理解,通過集合的運算求解。

函數的單調區(qū)間理解不準致誤

在研究函數問題時要時時刻刻想到“函數的圖像”,學會從函數圖像上去分析問題、尋找解決問題的方法。對于函數的幾個不同的單調遞增(減)區(qū)間,切忌使用并集,只要指明這幾個區(qū)間是該函數的單調遞增(減)區(qū)間即可。

判斷函數奇偶性忽略定義域致誤

判斷函數的奇偶性,首先要考慮函數的定義域,一個函數具備奇偶性的必要條件是這個函數的定義域關于原點對稱,如果不具備這個條件,函數一定是非奇非偶函數。

函數零點定理使用不當致誤

如果函數y=f(_)在區(qū)間[a,b]上的圖像是一條連續(xù)的曲線,并且有f(a)f(b)0,那么,函數y=f(_)在區(qū)間(a,b)內有零點,但f(a)f(b)0時,不能否定函數y=f(_)在(a,b)內有零點。函數的零點有“變號零點”和“不變號零點”,對于“不變號零點”函數的零點定理是“無能為力”的,在解決函數的零點問題時要注意這個問題。

三角函數的單調性判斷致誤

對于函數y=Asin(ω_+φ)的單調性,當ω0時,由于內層函數u=ω_+φ是單調遞增的,所以該函數的單調性和y=sin_的單調性相同,故可完全按照函數y=sin_的單調區(qū)間解決;但當ω0時,內層函數u=ω_+φ是單調遞減的,此時該函數的單調性和函數y=sin_的單調性相反,就不能再按照函數y=sin_的單調性解決,一般是根據三角函數的奇偶性將內層函數的系數變?yōu)檎龜岛笤偌右越鉀Q。對于帶有絕對值的三角函數應該根據圖像,從直觀上進行判斷。

忽視零向量致誤

零向量是向量中最特殊的向量,規(guī)定零向量的長度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實數中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會出錯,考生應給予足夠的重視。

向量夾角范圍不清致誤

解題時要全面考慮問題。數學試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時把這些因素考慮到,是解題成功的關鍵,如當a·b0時,a與b的夾角不一定為鈍角,要注意θ=π的情況。

an與Sn關系不清致誤

在數列問題中,數列的通項an與其前n項和Sn之間存在下列關系:an=S1,n=1,Sn-Sn-1,n≥2。這個關系對任意數列都是成立的,但要注意的是這個關系式是分段的,在n=1和n≥2時這個關系式具有完全不同的表現形式,這也是解題中經常出錯的一個地方,在使用這個關系式時要牢牢記住其“分段”的特點。

對數列的定義、性質理解錯誤

等差數列的前n項和在公差不為零時是關于n的常數項為零的二次函數;一般地,有結論“若數列{an}的前n項和Sn=an2+bn+c(a,b,c∈R),則數列{an}為等差數列的充要條件是c=0”;在等差數列中,Sm,S2m-Sm,S3m-S2m(m∈N_)是等差數列。

數列中的最值錯誤

數列問題中其通項公式、前n項和公式都是關于正整數n的函數,要善于從函數的觀點認識和理解數列問題。數列的通項an與前n項和Sn的關系是高考的命題重點,解題時要注意把n=1和n≥2分開討論,再看能不能統一。在關于正整數n的二次函數中其取最值的點要根據正整數距離二次函數的對稱軸的遠近而定。

錯位相減求和項處理不當致誤

錯位相減求和法的適用條件:數列是由一個等差數列和一個等比數列對應項的乘積所組成的,求其前n項和?;痉椒ㄊ窃O這個和式為Sn,在這個和式兩端同時乘以等比數列的公比得到另一個和式,這兩個和式錯一位相減,就把問題轉化為以求一個等比數列的前n項和或前n-1項和為主的求和問題。這里最容易出現問題的就是錯位相減后對剩余項的處理。

不等式性質應用不當致誤

在使用不等式的基本性質進行推理論證時一定要準確,特別是不等式兩端同時乘以或同時除以一個數式、兩個不等式相乘、一個不等式兩端同時n次方時,一定要注意使其能夠這樣做的條件,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論