




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
九年級《數(shù)學(下)》第二十七章二次函數(shù)實踐與探索泉州三中吳金糧問題1:培元中學東校區(qū)要建造一個圓形的噴水池,在水池中央垂直于水面豎一根柱子,上面的A處安裝一個噴頭向外噴水。連噴頭在內(nèi),柱高為0.8m。水流在各個方向上沿形狀相同的拋物線路徑落下,如圖(1)所示.(1)噴出的水流距水平面的最大高度是多少?(2)如果不計其他因素,為使水不濺落在水池外,那么水池的半徑至少為多少時,才能使噴出的水流都落在水池內(nèi)?根據(jù)設計圖紙已知:在圖中所示的直角坐標系中,水流噴出的高度y(m)與水平距離x(m)之間的函數(shù)關系式是:xyAOBOAEDBCF問題2:一個涵洞的截面邊緣成拋物線形,它的截面如圖所示,現(xiàn)測得,當水面寬AB=1.6m時,涵洞頂點與水面的距離為2.4m。這時,離開水面1.5m處,涵洞寬ED是多少?是否會超過1m?xyB(0.8,-2.4)點D的縱坐標為-0.9AEDB問題2:一個涵洞的截面邊緣成拋物線形,它的截面如圖所示,現(xiàn)測得,當水面寬AB=1.6m時,涵洞頂點與水面的距離為2.4m。這時,離開水面1.5m處,涵洞寬ED是多少?是否會超過1m?ED的寬約為米,不會超過1米。課堂練習:(課P24,習題27.3)1、如圖,一個運動員推鉛球,鉛球在點A處出手,出手時球離地面約1.6米,鉛球落地在點B處。鉛球運行中在運動員前4米處(即OC=4)達到最高點,最高點距地面高度為3.2米。已知鉛球經(jīng)過的路線是拋物線,在圖示的直角坐標系中,你能算出這個運動員的成績嗎?(精確到0.1米)D1.643.22、如圖,有一個橫截面為拋物線形的水泥門洞。門洞內(nèi)的地面寬度為8米,兩側(cè)距地面4米高處各有一盞燈,兩燈間的水平距離為6米。求這個門洞的高度。(精確到0.1米)課堂練習:(課P27,復習題13)門洞高為米
實際問題建立數(shù)學模型求解數(shù)學模型解的分析與檢驗解答函數(shù)課堂小結(jié):課后作業(yè):校本作業(yè)(四十)
CAEDBxy以點A為坐標原點,以AB所在直線為x軸,建立直角坐標系。如何求ED的寬?
C(0.8,2.4),B(1.6,0),A(0,0),點D、E的縱坐標都為1.5以點AB的中點為坐標原點,以AB所在直線為x軸,建立直角坐標系。如何求ED的寬?
CAEDBxyOFC(0,2.4),B(0.8,0),點D、E的縱坐標都為1.52、如圖,有一個橫截面為拋物線形的水泥門洞。門洞內(nèi)的地面寬度為8米,兩側(cè)距地面4米高處各有一盞燈,兩燈間的水平距離為6米。求這個門洞的高度。(精確到0.1米)課堂練習:(課P27,復習題13)OABCxy如圖,以地面寬的中點O為原點,地面OA所在直線為x軸建立直角坐標系A(4,0),B(3,4)2、如圖,有一個橫截面為拋物線形的水泥門洞。門洞內(nèi)的地面寬度為8米,兩側(cè)距地面4米高處各有一盞燈,兩燈間的水平距離為6米。求這個門洞的高度。(精確到0.1米)課堂練習:(課P27,復習題13)OACDxyB如圖,以O為原點,地面OA所在直線為x軸建立直角坐標系A(8,0),C(1,4),B(7,4)2、如圖,有一個橫截面為拋物線形的水泥門洞。門洞內(nèi)的地面寬度為8米,兩側(cè)距地面4米高處各有一盞燈,兩燈間的水平距離為6米。求這個門洞的高度。(精確到0.1米)課堂練習:(課P27,復習題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 函數(shù)奇偶性知識點歸納
- 收繳率提升培訓
- 壓力容器使用操作培訓
- 教育者書籍分享
- 紅鶴溝通-龍湖品牌上海推廣策略jpg格式
- 元旦安全小知識
- 山西省呂梁市部分學校 2024-2025學年七年級下學期3月月考生物試題(含答案)
- 河南省三市2024-2025學年高三下學期(第二次)質(zhì)量檢測物理試卷(含解析)
- 2025學年部編版語文四年級下冊期中培優(yōu)卷A
- 教育心理學概論課堂管理
- 拖欠貨款合同糾紛起訴狀范本
- 幼兒繪本故事:迪迪不想原諒人
- 愛美的小公雞(共22張)課件
- 碳酸丙烯酯法脫碳工藝工程設計
- 巧用繪本提升自閉癥兒童語言表達能力
- 計數(shù)型量具分析報告(Excel帶計算KAPPA公式)
- 麗聲北極星分級繪本第三級下 A Long Wait課件
- 瀝青路面工程施工監(jiān)理細則
- 譯林版六年級下冊英語期中試卷(江蘇南京江北新區(qū)2021年真卷含聽力答案)
- 新規(guī)范四統(tǒng)表(范本)
- 不穩(wěn)定性心絞痛和非ST段抬高心肌梗死診斷與治療指南(全文)
評論
0/150
提交評論