北京市中央美術(shù)學(xué)院附屬實驗學(xué)校2024屆高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第1頁
北京市中央美術(shù)學(xué)院附屬實驗學(xué)校2024屆高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第2頁
北京市中央美術(shù)學(xué)院附屬實驗學(xué)校2024屆高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第3頁
北京市中央美術(shù)學(xué)院附屬實驗學(xué)校2024屆高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第4頁
北京市中央美術(shù)學(xué)院附屬實驗學(xué)校2024屆高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

北京市中央美術(shù)學(xué)院附屬實驗學(xué)校2024屆高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.過點(1,0)且與直線x-2y-2=0平行的直線方程是()A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=02.已知圓和圓,則兩圓的位置關(guān)系為A.內(nèi)含 B.內(nèi)切C.相交 D.外切3.已知函數(shù)(,且)的圖象恒過點P,若角的終邊經(jīng)過點P,則()A. B.C. D.4.若,分別是方程,的解,則關(guān)于的方程的解的個數(shù)是()A B.C. D.5.設(shè)集合,,則A. B.C. D.6.圓O1:x2+y2﹣6x+4y+12=0與圓O2:x2+y2﹣14x﹣2y+14=0的位置關(guān)系是()A.相離 B.內(nèi)含C.外切 D.內(nèi)切7.直線l的方程為Ax+By+C=0,當(dāng),時,直線l必經(jīng)過A.第一、二、三象限 B.第二、三、四象限C.第一、三、四象限 D.第一、二、四象限8.集合{α|k·180°+45°≤α≤k·180°+90°,k∈Z}中的角α的終邊在單位圓中的位置(陰影部分)是()A. B.C. D.9.如圖,在下列四個正方體中,、為正方體兩個頂點,、、為所在棱的中點,則在這四個正方體中,直線與平面不平行的是()A. B.C. D.10.定義運算:,則函數(shù)的圖像是()A. B.C. D.11.已知,若不等式恒成立,則的最大值為()A.13 B.14C.15 D.1612.的值為A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知函數(shù)的圖象如圖,則________14.若函數(shù)有4個零點,則實數(shù)a的取值范圍為___________.15.已知平面向量,的夾角為,,則=______16.若冪函數(shù)是偶函數(shù),則___________.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知函數(shù),(1)求在上的最小值;(2)記集合,,若,求的取值范圍.18.已知方程(1)若方程表示一條直線,求實數(shù)的取值范圍;(2)若方程表示的直線的斜率不存在,求實數(shù)的值,并求出此時的直線方程;(3)若方程表示的直線在軸上的截距為,求實數(shù)的值;(4)若方程表示的直線的傾斜角是45°,求實數(shù)的值19.已知函數(shù)(1)若,求實數(shù)a值;(2)若函數(shù)f(x)有兩個零點,求實數(shù)a的取值范圍20.已知函數(shù)的圖象經(jīng)過點(1)求的解析式;(2)若不等式對恒成立,求m的取值范圍21.定義:若對定義域內(nèi)任意x,都有(a為正常數(shù)),則稱函數(shù)為“a距”增函數(shù)(1)若,(0,),試判斷是否為“1距”增函數(shù),并說明理由;(2)若,R是“a距”增函數(shù),求a的取值范圍;(3)若,(﹣1,),其中kR,且為“2距”增函數(shù),求的最小值22.已知集合,集合.(1)若,求和(2)若,求實數(shù)的取值范圍.

參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、A【解析】設(shè)出直線方程,利用待定系數(shù)法得到結(jié)果.【詳解】設(shè)與直線平行的直線方程為,將點代入直線方程可得,解得則所求直線方程為.故A正確【點睛】本題主要考查兩直線的平行問題,屬容易題.兩直線平行傾斜角相等,所以斜率相等或均不存在.所以與直線平行的直線方程可設(shè)為2、B【解析】由于圓,即

表示以為圓心,半徑等于1的圓圓,即,表示以為圓心,半徑等于3的圓由于兩圓的圓心距等于等于半徑之差,故兩個圓內(nèi)切故選B3、A【解析】由題可得點,再利用三角函數(shù)的定義即求.【詳解】令,則,所以函數(shù)(,且)的圖象恒過點,又角的終邊經(jīng)過點,所以,故選:A.4、B【解析】∵,分別是方程,的解,∴,,∴,,作函數(shù)與的圖象如下:結(jié)合圖象可以知道,有且僅有一個交點,故,即分類討論:()當(dāng)時,方程可化為,計算得出,()當(dāng)時,方程可化,計算得出,;故關(guān)于的方程的解的個數(shù)是,本題選擇B選項.點睛:(1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當(dāng)出現(xiàn)f(f(a))的形式時,應(yīng)從內(nèi)到外依次求值(2)當(dāng)給出函數(shù)值求自變量的值時,先假設(shè)所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應(yīng)自變量的值,切記要代入檢驗,看所求的自變量的值是否滿足相應(yīng)段自變量的取值范圍5、D【解析】詳解】試題分析:集合,集合,所以,故選D.考點:1、一元二次不等式;2、集合的運算.6、D【解析】先求出兩圓的圓心距,再比較圓心距和兩個半徑的關(guān)系得解.【詳解】由題得圓O1:它表示圓心為O1(3,-2)半徑為1的圓;圓O2:,它表示圓心為O2(7,1),半徑為6的圓.兩圓圓心距為,所以兩圓內(nèi)切.故選:D【點睛】本題主要考查兩圓位置關(guān)系的判定,意在考查學(xué)生對這些知識的理解掌握水平.7、A【解析】把直線方程化為斜截式,根據(jù)斜率以及直線在y軸上的截距的符號,判斷直線在坐標(biāo)系中的位置【詳解】當(dāng)A>0,B<0,C>0時,直線Ax+By+C=0,即y=﹣x﹣,故直線的斜率﹣>0,且直線在y軸上的截距﹣>0,故直線經(jīng)過第一、二、三象限,故選A【點睛】本題主要考查根據(jù)直線的斜截式方程判斷直線在坐標(biāo)系中的位置,屬于基礎(chǔ)題8、C【解析】利用賦值法來求得正確答案.【詳解】當(dāng)k=2n,n∈Z時,n360°+45°≤α≤n360°+90°,n∈Z;當(dāng)k=2n+1,n∈Z時,n360°+225°≤α≤n360°+270°,n∈Z.故選:C9、D【解析】利用線面平行判定定理可判斷A、B、C選項的正誤;利用線面平行的性質(zhì)定理可判斷D選項的正誤.【詳解】對于A選項,如下圖所示,連接,在正方體中,且,所以,四邊形為平行四邊形,則,、分別為、的中點,則,,平面,平面,平面;對于B選項,連接,如下圖所示:在正方體中,且,所以,四邊形為平行四邊形,則,、分別為、的中點,則,,平面,平面,平面;對于C選項,連接,如下圖所示:在正方體中,且,所以,四邊形為平行四邊形,則,、分別為、中點,則,,平面,平面,平面;對于D選項,如下圖所示,連接交于點,連接,連接交于點,若平面,平面,平面平面,則,則,由于四邊形為正方形,對角線交于點,則為的中點,、分別為、的中點,則,且,則,,則,又,則,所以,與平面不平行;故選:D.【點睛】判斷或證明線面平行的常用方法:(1)利用線面平行的定義,一般用反證法;(2)利用線面平行的判定定理(,,),其關(guān)鍵是在平面內(nèi)找(或作)一條直線與已知直線平行,證明時注意用符號語言的敘述;(3)利用面面平行的性質(zhì)定理(,).10、A【解析】先求解析式,再判斷即可詳解】由題意故選:A【點睛】本題考查函數(shù)圖像的識別,考查指數(shù)函數(shù)性質(zhì),是基礎(chǔ)題11、D【解析】用分離參數(shù)法轉(zhuǎn)化為恒成立,只需,再利用基本不等式求出的最小值即可.【詳解】因為,所以,所以恒成立,只需因為,所以,當(dāng)且僅當(dāng)時,即時取等號.所以.即的最大值為16.故選:D12、C【解析】sin210°=sin(180°+30°)=﹣sin30°=﹣.故選C.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、8【解析】由圖像可得:過點和,代入解得a、b【詳解】由圖像可得:過點和,則有:,解得∴故答案為:814、【解析】將函數(shù)轉(zhuǎn)化為方程,作出的圖像,結(jié)合圖像分析即可.【詳解】令得,作出的函數(shù)圖像,如圖,因為有4個零點,所以直線與的圖像有4個交點,所以.故答案為:15、【解析】=代入各量進行求解即可.【詳解】=,故答案.【點睛】本題考查了向量模的求解,可以通過先平方再開方即可,屬于基礎(chǔ)題.16、【解析】根據(jù)冪函數(shù)的定義得,解得或,再結(jié)合偶函數(shù)性質(zhì)得.【詳解】解:因為函數(shù)是冪函數(shù),所以,解得或,當(dāng)時,,為奇函數(shù),不滿足,舍;當(dāng)時,,為偶函數(shù),滿足條件.所以.故答案為:三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)答案見解析(2)【解析】(1)按對稱軸與區(qū)間的相對位置關(guān)系,分三種情況討論求最小值;(2)分與解不等式,再分析的情況即可求解.【小問1詳解】解:(1)由,拋物線開口向上,對稱軸為,在上的最小值需考慮對稱軸與區(qū)間的位置關(guān)系.(i)當(dāng)時,;(ii)當(dāng)時,;(ⅲ)當(dāng)時,【小問2詳解】(2)解不等式,即,可得:當(dāng)時,不等式的解為;當(dāng)時,不等式的解為.(i)當(dāng)時,要使不等式的解集與有交集,由得:,此時對稱軸為,∴只需,即,得.所以此時(ii)當(dāng)時,要使不等式的解集與有交集,由得:,此時對稱軸為,∴只需,即,得.所以此時無解.綜上所述,的取值范圍.18、(1);(2);;(3);(4).【解析】(1)先令,的系數(shù)同時為零時得到,即得時方程表示一條直線;(2)由(1)知時的系數(shù)為零,方程表示的直線的斜率不存在,即得結(jié)果;(3)由(1)知的系數(shù)同為零時,直線在軸上的截距存在,解得截距構(gòu)建關(guān)系,即解得參數(shù)m;(4)由(1)知,的系數(shù)為零時,直線的斜率存在,解得斜率構(gòu)建關(guān)系式,解得參數(shù)m.【詳解】解:(1)當(dāng),的系數(shù)不同時為零時,方程表示一條直線令,解得或;令,解得或所以,的系數(shù)同時為零時,故若方程表示一條直線,則,即實數(shù)的取值范圍為;(2)由(1)知當(dāng)時,,方程表示的直線的斜率不存在,此時直線方程為;(3)易知且時,直線在軸上的截距存在.依題意,令,得直線在軸上的截距,解得所以實數(shù)的值為;(4)易知且時,直線的斜率存在,方程即,故斜率為.因為直線的傾斜角是45°,所以斜率為1,所以,解得所以實數(shù)的值為19、(1)(2)【解析】(1)根據(jù)即可求出實數(shù)a的值;(2)令,根據(jù)由求得的值,再根據(jù)正弦函數(shù)的性質(zhì)分析的取值情況,結(jié)合題意即可得出答案.【小問1詳解】解:,∴,∴;【小問2詳解】解:令,則,由得,∵在[-,]上是增函數(shù),在[,]上是減函數(shù),且,∴時,x有兩個值;或時,x有一個值,其它情況,x值不存在,∴時函數(shù)f(x)只有1個零點,時,,要f(x)有2個零點,有,∴時,,要f(x)有2個零點,有,綜上,f(x)有兩個零點時,a的取值范圍是.20、(1),(2)【解析】(1)直接代入兩點計算得到答案.(2)變換得到,判斷在上單調(diào)遞減,計算,解不等式得到答案.【詳解】(1)由題意得解得,.故,(2)不等式,即不等式,則不等式在上恒成立,即不等式上恒成立,即在上恒成立因為在上單調(diào)遞減,在上單調(diào)遞減,所以在上單調(diào)遞減,故.因為在上恒成立,所以,即,解得故m的取值范圍為【點睛】本題考查了函數(shù)的解析式,恒成立問題,將恒成立問題轉(zhuǎn)化為函數(shù)的最值是解題的關(guān)鍵.21、(1)見解析;(2);(3).【解析】(1)利用“1距”增函數(shù)的定義證明即可;(2)由“a距”增函數(shù)的定義得到在上恒成立,求出a的取值范圍即可;(3)由為“2距”增函數(shù)可得到在恒成立,從而得到恒成立,分類討論可得到的取值范圍,再由,可討論出的最小值【詳解】(1)任意,,因為,,所以,所以,即是“1距”增函數(shù)(2).因為是“距”增函數(shù),所以恒成立,因為,所以在上恒成立,所以,解得,因為,所以.(3)因為,,且為“2距”增函數(shù),所以時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論