




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年福建寧德市高一上數(shù)學期末檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設集合,,,則()A. B.C. D.2.已知是兩條直線,是兩個平面,則下列命題中正確的是A. B.C. D.3.已知函數(shù),若正數(shù),,滿足,則()A.B.C.D.4.若集合,則()A. B.C. D.5.若,都為正實數(shù),,則的最大值是()A. B.C. D.6.如圖,三棱柱中,側(cè)棱底面,底面三角形是正三角形,是中點,則下列敘述正確的是A.平面B.與是異面直線C.D.7.直線的傾斜角為()A. B.C. D.8.下列說法不正確的是()A.奇函數(shù)的圖象關于原點對稱,但不一定過原點 B.偶函數(shù)的圖象關于y軸對稱,但不一定和y軸相交C.若偶函數(shù)的圖象與x軸有且僅有兩交點,且橫坐標分別為,則 D.若奇函數(shù)的圖象與y軸相交,交點不一定是原點9.已知函數(shù)可表示為()xy2345則下列結論正確的是()A. B.的值域是C.的值域是 D.在區(qū)間上單調(diào)遞增10.已知,,則“使得”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),若,則實數(shù)的取值范圍為______.12.已知是定義在上的偶函數(shù),且當時,,則當時,___________.13.在正三角形中,是上的點,,則________14.已知函數(shù),(1)______(2)若方程有4個實數(shù)根,則實數(shù)的取值范圍是______15.如圖,在四棱錐中,平面平面,是邊長為4的等邊三角形,四邊形是等腰梯形,,則四棱錐外接球的表面積是____________.16.已知a,b,c是空間中的三條直線,α是空間中的一個平面①若a⊥c,b⊥c,則a∥b;②若a∥α,b∥α,則a∥b;③若a∥α,b⊥α,則a⊥b;④若a∥b,a∥α,則b∥α;說法正確的序號是______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù),函數(shù).(1)填空:函數(shù)的增區(qū)間為___________(2)若命題“”為真命題,求實數(shù)的取值范圍;(3)是否存在實數(shù),使函數(shù)在上的最大值為?如果存在,求出實數(shù)所有的值.如果不存在,說明理由.18.如圖,四棱錐的底面是正方形,,點在棱上.(Ⅰ)求證:;(Ⅱ)當且為的中點時,求與平面所成的角的大小.19.已知全集,集合,集合.(1)求;(2)若集合,且集合與集合滿足,求實數(shù)的取值范圍.20.已知函數(shù)的部分圖象如圖所示.(Ⅰ)求函數(shù)的解析式;(Ⅱ)若為第二象限角且,求的值.21.記函數(shù)的定義域為集合,函數(shù)的定義域為集合(Ⅰ)求集合;(Ⅱ)若,求實數(shù)的取值范圍
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】根據(jù)交集、補集的定義計算可得;【詳解】解:集合,,,則故選:D2、D【解析】A不正確,因為n可能在平面內(nèi);B兩條直線可以不平行;C當m在平面內(nèi)時,n此時也可以在平面內(nèi).故選項不對D正確,垂直于同一條直線的兩個平面是平行的故答案為D3、B【解析】首先判斷函數(shù)在上單調(diào)遞增;然后根據(jù),同時結合函數(shù)的單調(diào)性及放縮法即可證明選項B;通過舉例說明可判斷選項A,C,D.【詳解】因為,所以函數(shù)在上單調(diào)遞增;因為,,,均為正數(shù),所以,又,所以,所以,所以,又因為,所以,選項B正確;當時,滿足,但不滿足,故選項A錯誤;當時,滿足,但此時,不滿足,故選項C錯誤;當時,滿足,但此時,不滿足,故選項D錯誤.故選:B.4、C【解析】根據(jù)交集定義即可求出.【詳解】因為,所以.故選:C.5、D【解析】由基本不等式,結合題中條件,直接求解,即可得出結果.【詳解】因為,都為正實數(shù),,所以,當且僅當,即時,取最大值.故選:D6、D【解析】因為三棱柱A1B1C1-ABC中,側(cè)棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中點,所以對于A,AC與AB夾角為60°,即兩直線不垂直,所以AC不可能垂直于平面ABB1A1;故A錯誤;對于B,CC1與B1E都在平面CC1BB1中不平行,故相交;所以B錯誤;對于C,A1C1,B1E是異面直線;故C錯誤;對于D,因為幾何體是三棱柱,并且側(cè)棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中點,所以BB1⊥底面ABC,所以BB1⊥AE,AE⊥BC,得到AE⊥平面BCC1B1,所以AE⊥BB1;故選D.7、C【解析】先根據(jù)直線方程得斜率,再求傾斜角.【詳解】因為直線,所以直線斜率為,所以傾斜角為,選C.【點睛】本題考查直線斜率以及傾斜角,考查基本分析求解能力,屬基本題.8、D【解析】對于AB,舉例判斷,對于CD根據(jù)函數(shù)奇偶性和對稱性的關系分析判斷即可【詳解】對于A,是奇函數(shù),其圖象關于原點對稱,但不過原點,所以A正確,對于B,是偶函數(shù),其圖象關于軸對稱,但與軸不相交,所以B正確,對于C,若偶函數(shù)的圖象與x軸有且僅有兩交點,且橫坐標分別為,則兩個交點關于軸對稱,所以,所以C正確,對于D,若奇函數(shù)與y軸有交點,則,故,所以函數(shù)必過原點,所以D錯誤,故選:D9、B【解析】根據(jù)給定的對應值表,逐一分析各選項即可判斷作答.【詳解】由給定的對應值表知:,則,A不正確;函數(shù)的值域是,B正確,C不正確;當時,,即在區(qū)間上不單調(diào),D不正確.故選:B10、C【解析】依據(jù)子集的定義進行判斷即可解決二者間的邏輯關系.【詳解】若使得,則有成立;若,則有使得成立.則“使得”是“”的充要條件故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、或【解析】令,分析出函數(shù)為上的減函數(shù)且為奇函數(shù),將所求不等式變形為,可得出關于的不等式,解之即可.【詳解】令,對任意的,,故函數(shù)的定義域為,因為,則,所以,函數(shù)為奇函數(shù),當時,令,由于函數(shù)和在上均為減函數(shù),故函數(shù)在上也為減函數(shù),因為函數(shù)在上為增函數(shù),故函數(shù)在上為減函數(shù),所以,函數(shù)在上也為減函數(shù),因為函數(shù)在上連續(xù),則在上為減函數(shù),由可得,即,所以,,即,解得或.故答案為:或.12、【解析】設,則,求出的表達式,再由即可求解.【詳解】設,則,所以,因為是定義在上的偶函數(shù),所以,所以當時,故答案為:.13、【解析】根據(jù)正三角形的性質(zhì)以及向量的數(shù)量積的定義式,結合向量的特點,可以確定,故答案為考點:平面向量基本定理,向量的數(shù)量積,正三角形的性質(zhì)14、①-2②.【解析】先計算出f(1),再根據(jù)給定的分段函數(shù)即可計算得解;令f(x)=t,結合二次函數(shù)f(x)性質(zhì),的圖象,利用數(shù)形結合思想即可求解作答.【詳解】(1)依題意,,則,所以;(2)函數(shù)的值域是,令,則方程在有兩個不等實根,方程化為,因此,方程有4個實數(shù)根,等價于方程在有兩個不等實根,即函數(shù)的圖象與直線有兩個不同的公共點,在同一坐標系內(nèi)作出函數(shù)的圖象與直線,而,如圖,觀察圖象得,當時,函數(shù)與直線有兩個不同公共點,所以實數(shù)的取值范圍是.故答案為:-2;15、##【解析】先根據(jù)面面垂直,取△的外接圓圓心G,梯形的外接圓圓心F,分別過兩點作對應平面的垂線,找到交點為外接球球心,再通過邊長關系計算半徑,代入球的表面積公式即得結果.【詳解】如圖,取的中點,的中點,連,,在上取點,使得,由是邊長為4的等邊三角形,四邊形是等腰梯形,,可得,,即梯形的外接圓圓心為F,分別過點、作平面、平面的垂線,兩垂線相交于點,顯然點為四棱錐外接球的球心,由題可得,,,則四棱錐外接球的半徑,故四棱錐外接球的表面積為故答案為:.16、③【解析】根據(jù)空間線面位置關系的定義,性質(zhì)判斷或舉反例說明【詳解】對于①,若a,b為平面α的直線,c⊥α,則a⊥c,b⊥c,但a∥b不一定成立,故①錯誤;對于②,若a∥α,b∥α,則a,b的關系不確定,故②錯誤;對于③,不妨設a在α上的射影為a′,則a′?α,a∥a′,由b⊥α可得b⊥a′,于是a⊥b,故③正確;對于④,若b?α,顯然結論不成立,故④錯誤.故答案為③【點睛】本題考查了空間線面位置關系的判斷,屬于中檔題,三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(寫出開區(qū)間亦可);(2);(3).【解析】(1)根據(jù)單調(diào)性的定義結合奇偶性可得解;(2)令,問題轉(zhuǎn)化為“”為真命題,根據(jù)基本不等式找函數(shù)的最小值即可;(3)當時,,記,若函數(shù)在上的最大值為,分和,結合對數(shù)函數(shù)的單調(diào)性列式求解即可.【詳解】(1)函數(shù)的增區(qū)間為(寫出開區(qū)間亦可);理由:,為偶函數(shù),任取,,所以的增區(qū)間為.(2),令,當且僅當時取“”,“”為真命題可轉(zhuǎn)化為“”為真命題,因為,當且僅當時取“”,所以,所以;(3)由(1)可知,當時,,記,若函數(shù)在上的最大值為,則1)當,即時,在上最小值為1,因為圖象的對稱軸為,所以,解得,符合題意;2)當,即時,在上最大值為1,且恒成立,因為圖象是開口向上的拋物線,在的最大值可能是或,若,則,不符合題意,若,則,此時對稱軸,由,不合題意0.綜上所述,只有符合條件.【點睛】本題主要考查了對數(shù)型、指數(shù)型的復合函數(shù)的單調(diào)性及最值問題。解題的關鍵是換元,將復雜的函數(shù)化為簡單的函數(shù),解決對數(shù)型的復合函數(shù)時要注意真數(shù)大于0這個隱含條件,屬于難題.18、(1)見解析(2)【解析】(Ⅰ)欲證平面AEC⊥平面PDB,根據(jù)面面垂直的判定定理可知在平面AEC內(nèi)一直線與平面PDB垂直,而根據(jù)題意可得AC⊥平面PDB;(Ⅱ)設AC∩BD=O,連接OE,根據(jù)線面所成角的定義可知∠AEO為AE與平面PDB所的角,在Rt△AOE中求出此角即可【詳解】(1)證明:∵底面ABCD是正方形∴AC⊥BD又PD⊥底面ABCDPD⊥AC所以AC⊥面PDB因此面AEC⊥面PDB(2)解:設AC與BD交于O點,連接EO則易得∠AEO為AE與面PDB所成的角∵E、O為中點∴EO=PD∴EO⊥AO∴在Rt△AEO中OE=PD=AB=AO∴∠AEO=45°即AE與面PDB所成角的大小為45°本題主要考查了直線與平面垂直的判定,以及直線與平面所成的角,考查空間想象能力、運算能力和推理論證能力,屬于基礎題19、(1);(2)【解析】(1)化簡集合,按照補集,并集定義,即可求解;(2),得,結合數(shù)軸,確定集合端點位置,即可求解.【詳解】(1)∵;∴;∴;(2)∵,∴;∴,∴,∴實數(shù)的取值范圍為.【點睛】本題考查集合間的運算,以及由集合關系求參數(shù),屬于基礎題.20、(1);(2).【解析】(1)根據(jù)圖象可得周期,故.再根據(jù)圖象過點可得.最后根據(jù)函數(shù)的圖象過點可求得,從而可得解析式.(2)由題意可得,進而可求得和,再按照兩角和的正弦公式可求得的值試題解析:(1)由圖可知,周期,∴.又函數(shù)的圖象過點,∴,∴,∴,∵,∴∴,∵函數(shù)圖象過點,∴,∴,所以.(2)∵為第二象限角且,∴,∴,,∴點睛:已知圖象求函數(shù)解析式的方法(1)根據(jù)圖象得到函數(shù)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 考前實戰(zhàn)演練2024年系統(tǒng)規(guī)劃與管理師考試試題及答案
- 系統(tǒng)規(guī)劃與管理復習過程的階段性目標設定試題及答案
- 經(jīng)驗積累2024年西醫(yī)臨床試題及答案
- 從各類案例看信息系統(tǒng)項目管理師考試試題及答案
- 心理咨詢師考試中的時間管理技巧總結試題及答案
- 系統(tǒng)架構設計師的市場前景與考試價值試題及答案
- 立足實際的母豬護理試題及答案
- 心理咨詢師考試閱讀理解試題及答案
- 嬰兒睡眠規(guī)律管理試題及答案
- 教師資格考試中培養(yǎng)學生核心素養(yǎng)的教學策略分析試題及答案
- 工程欠款起訴書范本標準版
- 【一等獎勞動教育案例】《小艾團,大愛心》勞動教育活動案例
- 泰國落地簽證申請表
- 后牙金屬全冠牙體預備
- GB/T 36362-2018LED應用產(chǎn)品可靠性試驗的點估計和區(qū)間估計(指數(shù)分布)
- GB/T 26480-2011閥門的檢驗和試驗
- GB/T 10923-2009鍛壓機械精度檢驗通則
- GA/T 1356-2018國家標準GB/T 25724-2017符合性測試規(guī)范
- 杜威《民主主義與教育》課件
- 強夯監(jiān)理實施細則
- 2022郵儲銀行綜合柜員(中級)理論考試題庫大全-上(單選、多選題)
評論
0/150
提交評論